通过写读后感可以加深我们对书本内容的理解, ,养成写读后感的习惯是可以帮助我们提高写作能力的,以下是好文档范文小编精心为您推荐的数学课外书的读后感5篇,供大家参考。
数学课外书的读后感篇1
这个星期,我看了一本书,名字叫《帮你学数学》,是张景中写的。
这本书的每一个小故事都有有声有色的图画,每个故事中含有一个数学题,程度有浅有深,在故事的最后,有这道题的正确解法和答案。
在这个社会上数学是一门重要的基础学科。它的重要性非常大的,曾有这样的三句话:数学是建设四化的武器,数学是其他科学的基础,数学是锻炼思维的体操。里面的故事简直是多的事,比如说有着这样的一个有趣的.故事,驴和马一块驮着粮食,去城市里,驴才走了一会儿,就不肯走了,驴对马说:"马大哥你背的有多重呀?"马就出了给驴的题目,再说驴算出了马驮的有多重,自己算出了自己驮的有多重,在也不叫苦叫累。
我读完了这本书,感觉这本书写的非常好,学习是紧张的,更应该是有趣的,希望大家看了这本书学的轻松,学的有劲,取得最好的学习效果。
数学课外书的读后感篇2
一个奇特的数字电梯,你想进去吗?一个奇怪的数字大门,你想闯进去吗?一位可怕的数学魔鬼,你敢见它吗?如果你的答案是肯定的话,那就同我一起进入数学的世界吧!
“可怕”的数学这本书主要讲了数学里的.圆、长方形、正方形等形状,还有一位数学魔鬼,它会领着你来到数学的王国里,当然它偶尔也会犯点小错误,但这些小错误为我们增添了许多乐趣。
让我们一起来瞧一瞧书中的精彩片段吧:你的面前出现了一位十分可怕的魔鬼,它取出三个方块,口中念念有词,它说了声“变”,我就来到了一个仙境一样的地方,到处全是方的,方的树、方的鸟,连我的身子也全是方的,到处是数字和符号:+、—、小数……
数学两个字的含义数不清,也十分深奥,如果数学是一座很大的城堡,那么我才刚刚来到了这座城堡的大门口!大家如果喜欢数学,也来看看这本书,它不仅富含趣味性,还让所有读过这本书的人全都喜爱上数学。
数学课外书的读后感篇3
?小学数学》这本书是由特级教师吴正宪、张丹两位老师主编的。本书从研究小学数学教学的角度,针对小学数学教师的公开研讨、常态教学,按不同教学内容的教学来编排。
本书共六章:第一章是新课程理念下“运算教学”的研讨;第二章是新课程理念下空间与图形教学的研讨;第三章是“应用题”教学与学生解决问题能力的培养;第四章是新课程理念下“统计与概率”的教学研讨;第五章是运用多种教学方式,提高教学的有效性;第六章是课堂观察和如何评价一堂课。
每章都分为几个步骤:简介让我们知道这一章的主要内容,从问题出发,吸引我们看的兴趣,因为这些问题都是我们平时教学中的常见问题;引言,提出问题,引发我们的头脑风暴,启发我们思考;第一节通过案例研讨,引发深入的思考;第二节观点分享,给出一些专家、优秀一线教师的思考和建议,非常中肯地切中我们的'难点,令我感到读一本好书,就是同时与很多个优秀的老师作交流,聆听他们的教诲,真的是对很多问题都恍然大悟;后面还附加了拓展资源,来自于报刊杂志的优秀文章,更加拓宽我们小学数学教师的专业视野;最后热点聚焦来自于多位一线教师的问题探讨交流,让我感到原来我们都有同样的困惑。教学研讨交流是很幸福的事,因为有那么多人都在做着同一件事,我并不是孤单无助的,我们可以共同讨论、共同进步,网络缩短了我们的距离。
在读这本书的过程中,我也在反思着自己的教学,我是怎么处理教学中出现的问题,处理是否得当。我结合解决问题教学,重点阅读了《“应用题”教学与学生解决问题能力的培养》这一章,深受启发。以下记录自己从书中和教学中悟到的培养学生解决问题一般能力的策略思考:
1、从问题素材的选择来培养学生解决问题能力;
2、从数量关系的分析中提高学生的解决问题能力;
3、从解题方法的辨析中提高学生的解决问题能力;
4、从问题的创编中提高学生的解决问题能力;
我还要继续读这本书,思考书中的理论,别人的教学实践,运用于自己的教学实践,不断提高自己课堂教学的能力和自我反思的能力。
数学课外书的读后感篇4
由柯朗与罗宾合著的《什么是数学》是一本世界数学名著。初版已过60年,曾有中译本由两家出版社在约20年前出版过。可喜的是,1996年牛津大学出版社又出了增订版,近期复旦大学出版社推出了该版的中文译本。
作为20世纪的杰出数学家,柯朗曾在当时的数学圣地———德国格丁根大学师从希尔伯特等数学巨匠。纳粹上台后,他来到美国,创办了举世闻名的柯朗研究所。关于柯朗,瑞德有一本传记《一位数学家的双城记》在我国翻译出版,里头有柯朗和同时代数学家的许多故事。单单翻翻书中的照片,当时优秀知识分子的集体形象伴随着如雷贯耳的名字跃入眼帘,足以令我们这些后辈学子仰慕不已。有意思的是,格丁根那些令人生畏的数学泰斗们,都写过精彩的数学普及读物,如希尔伯特的《直观几何》、克莱因的《高观点下的初等数学》、外尔的《对称》以及柯朗的《什么是数学》。这些作品的共同特点是高屋建瓴、厚积薄发。
阿贝尔曾经说过,要向大师学习,而不是向大师的门徒学习。因为大师们可以引领你快速地进入正道。
?什么是数学》一出版就得到了各方面的高度评价。爱因斯坦认为,这本书是“对整个数学领域中的基本概念及方法的透彻而清晰的'阐述”。外尔和莫尔斯等数学大师也对之赞誉有加。《纽约时报》也肯花版面予以介绍。
单单从书名来看,这本书的内容、体裁有多种选择(选择太宽,有时既是自由也是难题),比方说,这本书既可以写成低幼读物,也可以是大块头的专著(类似闻名遐迩的布尔巴基《数学原本》之类)。柯朗选择的体裁大致就是今天所说的“高级科普”。高级科普的创作难度不在于知识的专深,而在于如何保持作者与广大读者之间必要的亲和力。它既要充分体现作者自身的想法,又要兼顾那些并非专家的读者。这方面失败和成功的例子都很多。而流传几十年而不衰、今天还要请数学科普名家斯图尔特增订这一事实,就已经证明了《什么是数学》注定是一本成功的经典名著。也许将来还会有个斯图尔特2来增订哩!写到这里,笔者在想,论文的价值在于引用率,那么科普著作的生命力是否在于它出修订或增订版呢?也许这是一个不错的指标。
除了体裁,柯朗还要面对另一个难题。20世纪的数学已经发展到了让人望洋兴叹的地步,如何在一本可以带出去郊游时随便翻翻的作品中,把这门异常发达的学科的面貌体现在读者面前呢?柯朗的做法是搜集很多数学上的“珍品”,每个方面的讲述并非深不见底,但也不是蜻蜓点水。适当地深入,然后在该结束的时候结束。这种既非盲人摸象、亦非解剖大象的方法,可以让普通读者也能粗略领悟到数学无比精巧的结构之美。这大概也是遵从了希尔伯特所倡导的数学作为一个有机整体的思想。
柯朗为这本书煞有其事地添加了副标题———“对思想和方法的基本研究”。所谓“研究”何以谈起呢?斯图尔特为我们作了揭示。原来,在相对浅显的字里行间,渗透着这样的思想骨架,即数学的学科性。这种学科性并非某些人的自由创造,为抽象而抽象;但也不是完全从实物出发,尽管数学在现实生活中用途广泛。数学就跟植物学或天文学一样,学科性固有的“节律”促使它向前发展,而我们的职责是履行这种学科性。比如植物学家发现一个新物种、天文学家发现一颗新的恒星,就要记录下来,不记录才是不称职。如果碰巧这一新物种对人类战胜癌魔具有重大意义,那么这个植物学家保不定会得诺贝尔奖;如果这种植物对于人类没什么用处,植物学家可能顶多在百科全书中简略提及。而一开始就质问这种知识到底有没有实用价值,那就背离了学科固有的原则,乃是彻头彻尾的无知和错误。什么是有价值的,什么是价值不大的,什么该淘汰,这应由历史而不是人为决定。希尔伯特尽管谨慎地提出了23个问题,但他也同时警告说,预先去判断一个问题的价值往往是不可能的。现在看来,这些问题中有一部分之价值在数学发展史上确实没有当初想像的那么大。庞加莱说过,“要想预见数学的未来,适当的途径是研究它的历史与现状。”《什么是数学》选择了一些有价值的领域,这些领域都是发展成熟的,并且也是引人入胜的。
?什么是数学》的内容错落有致,层次分明。数学的三大版块———代数、几何和分析按章依次加以阐述。作者也注意到不同章节适当的衔接。全书从自然数谈起,然后引申到数论和数系的扩充,直到集合这个最一般的客体。第三章又转入几何作图,并与数域代数联系在一起。接下来的两章,作者从射影几何、非欧几何一直谈到拓扑学。最后三章重点阐述微积分及其应用。
数学或相关学科的重大问题,一直是发展数学理论的源泉和刺激。问题的重要性不在于难易程度,也不在于是否“高等”。通过穿插书中的一个个问题,我们可以看出活生生的数学研究过程。就拿解代数方程来说吧。由于提升了次数,便与几何作图联系起来,最终的发现是丰厚的:一是复数和代数基本定理的提出;二是群论的发明。另一方面,提升方程的元数,则导致矩阵、线性空间的概念,最终与群也有关系。单单一个解方程就搞出那么多名堂!
微积分是一个与代数方程有较大差异的领域,亦始终由一些有趣问题而触发。这些问题更多地来自物理,最著名的是最速降线、三体问题和关于肥皂膜张成极小曲面的普拉托问题;也有纯数学问题,如四色问题。这些表面上看起来毫不相干的问题,使得数学家将微积分拓展到微分方程、变分法、拓扑学和微分动力系统等重要分支。作者还加入了不少著名的“初等极值问题”,如等周问题、光路三角形、最短网络等。不仅增加了可读性,而且强调了这些历史名题对数学发展不可磨灭的功勋。
问题的提出是为了解决问题和提出新问题,最终目的不是炫耀自己的解题本领,而是强化理论武器,达到更高的境界和更广的视野。所以数学家不是工程师,整部数学史是数学家找问题,而不是问题找数学家。工程师、医师总希望问题少点好,而数学家恰恰相反。书中对问题背后新概念的把握可谓丝丝入扣,读来经常有得到“提升”的感觉。几个世纪以来,数学家把零零碎碎的问题在根子上寻找统一的努力,无疑树立了人类理性的伟大里程碑。
当然,柯朗没有看到数学的一些激动人心的新进展,如费马大定理、四色问题的证明,以及素数问题、纽结、分形和连续统假设等。这一切都由斯图尔特在第9章“最新进展”中做了精要而出色的介绍。
本书的参考文献也做得相当好,推荐阅读书目肯定花费了作者很多心思。这也是一本好的科普书的特征。
好作品要让读者常读常新。例如《西游记》,比起那些佛教典籍,太容易读懂了,但好玩的故事和浅显的文字背后,其思想上的玄妙实在不是一语、一人可以道破、穷尽的,故而历来评论绵绵不断;即便是普通读者,碰到一些社会现象,与小说中的情节做些类比,也有新的感悟。那么科学著作能否也达到同样的功效呢?至少,《什么是数学》这本书是做到了。
数学课外书的读后感篇5
在大学初学《数学史》时,我便对数学史产生了浓厚的兴趣,并由此爱上了数学这一学科。工作后,我成为了一名数学教师。我常常在想,如果能够把数学文化融入到课堂中来,那是一件多么有意思的事。于是,我仔细研读了《数学文化》一书,获益颇多。
众所周知,数学是人类文明的一个重要组成部分。最初牙牙学语地创造丰富多彩的记数制度,然后在花季雨季之中为数学建立越来越多、越来越详尽的分支,到如今,展现它花样年华之时耀眼夺目的数学成果。与其他文化一样,数学科学也是集齐了几千年人类智慧的结晶。
读完《数学文化》,心底不由得一阵感动。那是一种什么感觉呢?是一个对数学有着宗教般虔诚的仰望者的心动,是一个对历史有着无尽探索欲望的追求者的向往。每一代人都在数学这座古老的大厦上添加一层楼。当我们为这个大厦添砖加瓦时,有必要了解它的历史。通过这本书,我对数学发展的概况有了一个较为全面的了解。书中通过生动具体的事例,介绍了数学发展过程中的若干重要事件、重要人物与重要成果,让我初步了解了数学这门科学产生与发展的历史过程,体会了数学对人类文明发展的作用,感受到了数学家严谨的治学态度和锲而不舍的探索精神。
我已经是第二次看马小跳玩数学了。杨红樱老师写的马小跳玩数学书很受我们小学生的喜爱。书中含有80个趣味数学故事,如“厉害的侦探”,最让我着迷的是“奇妙的舞蹈队形”里头讲了芭蕾舞队要排练一个节目。一共分两队,它们分别是12人和11人,各要求排成6行,每行4人。夏林果不知该怎么排,结果是马小跳和路曼曼帮她解决,也让我明白了怎样排。
我很喜欢这本书,因为它让我懂了很多以前不懂的解题诀窍。如100米围墙每隔5米栽1棵树,我们经常不想就把它得20棵,但两端却把它给忘了,所以栽的棵数要比段多1棵,就是21棵。
这本书让我们玩中学,学中玩,不再无聊。这本书还让我们懂得了生活中处处都是数学。
每当我们正在学习的时候,总会遇到一些困难,总会说:"读书一点也没劲,一点劲也没有。"
今天,我看了一本书名叫趣味数学大王,里面全是一些有趣的故事,每当同学们在学习的时候,学累了就可以看这本书,它可以把枯燥 的知识融合进有趣的故事来,会怎样呢?
趣味数学大王这本书唤起了我们对数学的兴趣。这本书里,好象把我带到了童话世界:每一个小故事都有有声有色的图画,非常富有情趣,具有很强的可读性。每个故事中含有一个数学题,程度有浅有深,在故事的最后,有这道题的正确解法和答案巧妙的告诉你的……
在这个社会上数学是一门重要的基础学科。它的重要性非常大的,曾有这样的三句话:数学是建设四化的武器,数学是其他科学的基础,数学是锻炼思维的体操。里面的故事简直是多的事,比如说有着这样的一个有趣的故事,驴和马一块驮着粮食,去城市里,驴才走了一会儿,就不肯走了,驴对马说:"马大哥你背的有多重呀?"马就出了给驴的题目,再说驴算出了马驮的有多重,自己算出了自己驮的有多重,在也不叫苦叫累。
你听完了,你一会懂得了一些数学知识,你一定还会懂得一些故事里的一些教你做人的道理。
我读完了这本书,感到了这本书写的非常好,这本书还看展了 "讲故事,做习题"的活动,学习是紧张的,更应该是有趣的,希望小朋友们看了这本书学的轻松,学的有劲,取得最好的学习效果。
暑假里,我读了《数学在哪里》这本书,它主要是唐彩斌和彭翕成编写的,这两位文学作家很有名气,我还读过他们好多的书籍。
?数学在哪里》里面讲解了许多有趣的数学知识,运用故事讲解,让我很容易理解,树立的内容各种各样,有乘除法估算,有简便运算和认识毫米和千米,还有认识周长、面积等等。那里面还有好多趣味的题目,难的题目有时候让我苦思冥想,一个多小时才能解出答案,简单的也很快,我可以5分钟之内就做出来。真是一本有挑战的书啊。
这本书我读过之后,感觉真是一本有趣的书,希望所有的小朋友都可以看一看里面的数学知识,挑战一下有难度的题目,锻炼自己的思维,让自己不断成长。
以上就是一秘为大家带来的5篇《数学课外书读后感》,希望可以启发您的一些写作思路,更多实用的范文样本、模板格式尽在一秘。
数学课外书的读后感5篇相关文章: