酸的性质教案5篇

时间:
Lonesome
分享
下载本文

通过教案,教师能够有条理地安排教学步骤,提高教学过程的顺畅性和连贯性,为了提高我们的教学质量,我们应该认识到详细的教案是必不可少的,以下是好文档范文小编精心为您推荐的酸的性质教案5篇,供大家参考。

酸的性质教案5篇

酸的性质教案篇1

教学内容:教科书第60~61页,例1、例2、

练一练,练习十一第1~3题。

教学目标:

1、使学生经历探索分数基本性质的过程,初步理解分数的基本性质。

2、使学生能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象,概括的能力,体现数学学习的乐趣。

教学重点:让学生在探索中理解分数的基本性质。

教学过程:

一、导入新课

1、我们已经学习了分数的有关知识,这节课在已经掌握的知识基础上继续学习。

2、出示例1图。

你能看图写出哪些分数?你是怎样想的?说出自己的想法。

二、教学新课

1、教学例1。

(1)这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?

(2)你其中哪几个分数是相等的吗?你是怎么知道这三个分数相等的?

(3)演示验证。

2、教学例2。

(1)取出正方形纸,先对折,用涂色部分表示它的1/2。学生操作活动。

(2)你能通过继续对折,找出和1/2相等的其它分数吗?学生操作活动。交流汇报。对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?(板书)

(3)得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?

(4)观察每个等式中的两个分数,它们的分子、分母是怎样变化的?观察、思考,试着完成填空。在小组中说说你有什么发现?

(5)小结。分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。板书课题:分数的`基本性质。

(6)为什么要“0”除外呢?

(7)你能根据分数的基本性质,写出一组相等的分数吗?学生尝试完成。

(8)根据分数和除法的关系,你能用整数除法中商不变的规律来说明分数的基本性质吗?在小组中说一说。

3、完成练一练。

(1)完成第1题。涂色表示已知分数,再在右图中涂出相等部分。说说怎么想的?

(2)完成第1题。独立完成,汇报想法。5到15乘了几?1怎么办?先看哪个数?(分子9)9到1除以几?分母18怎么办?

三、巩固练习

1、完成练习十一第1题。平均分成了多少份?表示多少份?涂色表示。涂色部分还表示几分之几?

2、完成第2题。独立完成,交流想法。

四、课题总结

今天有了什么收获?你认为学习了分数的基本性质有什么作用?在什么时候可能会用到它?

酸的性质教案篇2

㈠课时目标

1.熟悉双曲线的几何性质。

2.能理解离心率的大小对双曲线形状的影响。

3.能运用双曲线的几何性质或图形特征,确定焦点的位置,会求双曲线的标准方程。

㈡教学过程[情景设置]

叙述椭圆的几何性质,并填写下表:方程性质

图像(略)范围-a≤x≤a,-b≤y≤b对称性对称轴、对称中心顶点(±a,0)、(±b,0)离心率e=(几何意义)

[探索研究]1.类比椭圆的几何性质,探讨双曲线的几何性质:范围、对称性、顶点、离心率。双曲线的实轴、虚轴、实半轴长、虚半轴长及离心率的定义。双曲线与椭圆的几何性质对比如下:方程性质

图像(略)(略)范围-a≤x≤a,-b≤y≤bx≥a,或x≤-a,y∈r对称性对称轴、对称中心对称轴、对称中心顶点(±a,0)、(±b,0)(-a,0)、(a,0)离心率0<e=<1e=>1

下面继续研究离心率的几何意义:(a、b、c、e关系:c2=a2+b2, e=>1)

2.渐近线的发现与论证根据椭圆的上述四个性质,能较为准确地把画出来吗?(能)根据上述双曲线的四个性质,能较为准确地把画出来吗?(不能)通过列表描点,能把双曲线的顶点及附近的点,比较精确地画出来,但双曲线向何处伸展就不很清楚。我们能较为准确地画出曲线y=,这是为什么?(因为当双曲线伸向远处时,它与x轴、y轴无限接近)此时,x轴、y轴叫做曲线y=的渐近线。问:双曲线有没有渐近线呢?若有,又该是怎样的直线呢?引导猜想:在研究双曲线的范围时,由双曲线的标准方程可解出:y=± =±当x无限增大时,就无限趋近于零,也就是说,这是双曲线y=±与直线y=±无限接近。这使我们猜想直线y=±为双曲线的渐近线。直线y=±恰好是过实轴端点a1、a2,虚轴端点b1、b2,作平行于坐标轴的直线x=±a, y=±b所成的矩形的两条对角线,那么,如何证明双曲线上的点沿曲线向远处运动时,与渐近线越来越接近呢?显然,只要考虑第一象限即可。证法1:如图,设m(x0,y0)为第一象限内双曲线上的仍一点,则y0=,m(x0,y0)到渐近线ay-bx=0的距离为:∣mq∣= ==.点m向远处运动,x0随着增大,∣mq∣就逐渐减小,m点就无限接近于y=故把y=±叫做双曲线的渐近线。

3.离心率的几何意义∵e=,c>a, ∴e>1由等式c2-a2=b2,可得===e越小(接近于1)越接近于0,双曲线开口越小(扁狭)e越大越大,双曲线开口越大(开阔)

4.巩固练习求下列双曲线的渐近线方程,并画出双曲线。 ①4x2-y2=4 ②4x2-y2=-4已知双曲线的渐近线方程为x±2y=0,分别求出过以下各点的双曲线方程①m(4,)②m(4,)[知识应用与解题研究]例1求双曲线9y2-16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程。例2双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转而成的曲面,如图;它的最小半径为12m,上口半径为13m,下口半径为25m,高为55m,选择适当的坐标系,求出此双曲线的方程(精确到1m)

㈣提炼总结

1.双曲线的几何性质及a、b、c、e的关系。

2.渐近线是双曲线特有的性质,其发现证明蕴含了重要的数学思想与数学方法。

3.双曲线的几何性质与椭圆的几何性质类似点和不同点。

酸的性质教案篇3

教学目标:

1.理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

2.理解和掌握分数的基本性质。

3.较好的实现知识教育与思想教育的有效结合。

教学重点:

理解和掌握分数的基本性质。

教学难点:

能熟练、灵活地运用分数的基本性质。

教学过程:

一、创设情景

师:同学们,为了让你们了解到更多的科技知识,在科技周活动中,学校做了三块科普展板(投影出示教材中的三块展板)。同学们认真观察,你们能提出什么问题?

师:猜想对解决问题很重要,它们到底相不相等?下面以小组为单位,想办法来验证一下。

二、新授

师:同学们想了很多好的方法,哪个小组愿意汇报一下?

生1:我们组是用画图的方法来验证的。我们先画了三个大小一样的正方形表示三块展板,把它们分别平均分成2份、4份和8份,再分别去其中的1份、2份和4份涂上颜色(展示学生画的图)。通过比较我们发现,涂色部分的大小是相等的',所以

生2:我们组是用折纸的方法来验证的。我们先取了三根同样长的纸条,通过对折把它们分别平均分成2份、4份和8份,分别涂色表示(展示学生的折纸情况)。通过折纸我们组也发现(学生在小组中讨论、验证)

师:我们发现的这个规律,就是分数的基本性质。

同学们现在小组内总结一下,什么是分数的基本性质?

(学生认真讨论)

师:同学们汇报一下你们的讨论结果。

三、 自主练习 巩固提高

课本第80页1、2、3、题。

其中,第1题引导学生通过涂色和比较,加深对分数基本性质的直观感受。

第2题二生爬黑板板演,第3、4 题学生自做。师巡视指导。

课堂小结 :

一生小结,他生补充,教师评判。

酸的性质教案篇4

教学内容:

人教版小学数学教材六年级上册第50~51页内容及相关练习。

教学目标:

1.理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的方法。

2.在自主探索的过程中,沟通比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。

3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。

教学重点:

理解比的基本性质

教学难点:

正确应用比的基本性质化简比

教学准备:

课件,答题纸,实物投影。

教学过程:

一、复习引入

1.师:同学们先来回忆一下,关于比已经学习了什么知识?

预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。

2.你能直接说出700÷25的商吗?

(1)你是怎么想的?

(2)依据是什么?

3.你还记得分数的基本性质吗?举例说明。

?设计意图】影响学生学习的一个重要因素就是学生已经知道了什么,于是此环节意在通过复习、回忆让学生沟通比、除法和分数之间的关系,重现商不变性质和分数的基本性质,为类比推出比的基本性质埋下伏笔。同时,还有机渗透了转化的数学思想,使学生感受知识之间存在着紧密的内在联系。

二、新知探究

(一)猜想比的基本性质

1.师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变性质,分数有分数的基本性质,联想这两个性质,想一想:在比中又会有怎样的规律或性质?

预设:比的基本性质。

2.学生纷纷猜想比的基本性质。

预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

3.根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

?设计意图】比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。

(二)验证比的基本性质

师:正如大家想的,比和除法、分数一样,也具有属于它自己的规律性质,那么是否和大家猜想的“比的前项和后项同时乘或除以相同的数(0除外),比值不变”一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。

1.教师说明合作要求。

(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。

(2)小组讨论学习。

①每个同学分别向组内同学展示自己的研究成果,并依次交流(其他同学表明是否赞同此同学的结论)。

②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。

③选派一个同学代表小组进行发言。

2.集体交流(要求小组发言代表结合具体的例子在展台上进行讲解)。

预设:根据比与除法、分数的关系进行验证;根据比值验证。

3.全班验证。

16:20=(16○□):(20○□)。

4.完善归纳,概括出比的基本性质。

上题中○内可以怎样填?□内可以填任意数吗?为什么?

(1)学生发表自己的见解并说明理由,教师完善板书。

(2)学生打开书本读一读比的基本性质,教师板书课题。(比的基本性质)

5.质疑辨析,深化认识。

?设计意图】基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,这样可以促使每个学生经历自主探究的学习过程,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。

三、比的基本性质的应用

师:同学们,你们还记得我们学习分数的基本性质的用途吗?什么是最简分数?

今天我们发现的比的基本性质也有一个非常重要的用途──可以化简比,进而得到一个最简整数比。

(一)理解最简整数比的含义。

1.引导学生自学最简整数比的相关知识。

预设:前项、后项互质的整数比称为最简整数比。

2.从下列各比中找出最简整数比,并简述理由。

3:4;18:12;19:10;;0.75:2。

(二)初步应用。

1.化简前项、后项都是整数的比。(课件出示教材第50页例1)

学生独立尝试,化简后交流。

(1)15:10=(15÷5):(10÷5)=3:2;

(2)180:120=(180÷□):(120÷□)=():()。

预设:除以公因数和逐步除以公因数两种方法,但重点强调除以公因数的方法。

2.化简前项、后项出现分数、小数的比。(课件出示)

师:对于前项、后项是整数的比,我们只要除以它们的公因数就可以了,但是像:和0.75:2,

这两个比不是最简整数比,你们能自己找到化简的方法吗?四人小组讨论研究,找到化简的方法。

学生研究写出具体过程,总结方法,并选代表展示汇报。教师对不同方法进行比较,引导学生掌握一般方法。

预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。

3.归纳小结:同学们通过自己的努力探索,总结出了将各类比化为最简整数比的方法。化简时,如果比的前项和后项都是整数,可以同时除以它们的公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。

4.方法补充,区分化简比和求比值。

还可以用什么方法化简比?(求比值)

化简比和求比值有什么不同?

预设:化简比的最后结果是一个比,求比值的最后结果是一个数。

5.尝试练习。

把下面各比化成最简单的整数比(出示教材第51页“做一做”)。

32:16;48:40;0.15:0.3;

?设计意图】新课程标准提出教学中应该充分体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人。因此在运用比的基本性质化简比的教学过程中,通过自学、独立探究、小组合作等方式,为学生创造一个积极的数学活动的机会,鼓励学生自主探究,找到化简比的方法。

四、巩固练习

(一)基础练习

1.教材第53页第4题。

把下列各比化成后项是100的比。

(1)学校种植树苗,成活的棵数与种植总棵数的比是49:50。

(2)要配制一种药水,药剂的质量与药水总质量的比是0.12:1。

(3)某企业去年实际产值与计划产值的比是275万:250万。

2.教材第53页第6题。

(二)拓展练习(ppt课件出示)

学生口答完成。

1.2:3这个比中,前项增加12,要使比值不变,后项应该增加()。

2.六(1)班男生人数是女生人数的1.2倍,男生、女生人数的比是(),男生和全班人数的比是(),女生和全班人数的比是()

?设计意图】练习的设计要紧紧围绕教学的重难点,同时练习的编排应体现从易到难的层次性。第1题是针对比的基本性质的基础练习,同时也为后续百分数的学习埋下伏笔。第2题训练单位不同的两个数量的比的化简方法,培养学生的审题能力。拓展练习不仅发展学生思维的灵活性、培养学生的创造能力,而且很好地巩固了本节课的知识,同时这类题型也是分数应用题、比例应用题的基础训练,也为以后分数应用题和比例应用题的学习打下扎实的基础。

五、课堂小结

这节课你有什么收获?还有什么疑问?

酸的性质教案篇5

教学内容:教材第30~31页比例的意义和基本性质,练习六第1~5题。

教学要求:使学生理解比例的意义和基本性质,能用比例的意义或性质判断两个比成不成比例;通过教学培养学生初步的综合、概括能力。

教学重点:理解比例的意义和基本性质。

教学难点:用比例的意义或性质判断两个比成不成比例。

教学理念:以学生为主体,把较多的时间和空间留给学生探索、交流、概括。

教具、学具准备:小黑板,教学课件

教学步骤

一、复习铺垫

l.什么叫做两个数的比?请你说出两个比。(教师板书)

2.什么是比的比值?上面两个比的比值是多少?

3.引入新课。

我们已经认识了比,知道怎样求比值。今天就根据比和比值来学习比例,并且认识比例的基本性质。(板书课题)

二、导入新课

1.教学比例的意义。

让学生算出下面各比的比值,再比较每组里两个比的比值有什么关系。(指名板演)

(1) 3 :5 24 :40 (2) :7.5 :3

追问:比值相等,说明每组里两个比怎样?

指出:表示两个比相等的式子叫做比例。

说一说,上面两个等式表示的是怎样的式子?

2.下面两个比之间的哪些○里能填“=”,为什么?

1 :2○3 :6 0.5 :0.2○5 :2

1.5 :3○15 :3:2○:1

提问:填了等号后的式子是什么? 1.5 :3和15 :3为什么不能组成比例?要判断两个比能不能组成比例,可以看它们的什么?指出:要判断两个比是不是相等,可以看比值是不是相等;也可以把两个比化简后看是不是相同的两个比。

3.教学例1。

出示例1,让学生先写出两次买练习本的钱数和本数的比。提问:怎样判断这两个比能不能组成比例?让学生判断并写出比例。提问:能不能组成比例?(板书比例式)为什么?强调:只有两个比值相等的比才能组成比例。

让学生根据比例的意义,在( )里填上适当的数。

3 :6=5 :( ) 0.8 :( )=1 :

4.教学比例的基本性质。

向学生说明比例各部分的名称。

让学生看开始组成的两个比例,说一说其中的内项和外项。让学生计算上面比例里两个外项的积和两个内项的积,并要求观察,从中发现什么。

5.判断能否组成比例。

出示“3.6 :1.8和0.5 :0.25”。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。提问:2.6 :1.8和0.5 :0.25能组成比例吗?

强调指出:根据比例的`基本性质,也可以判断两个比能不能组成比例,判断时可以先把两个比看成是比例。如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。

如果学生有困难,启发用比值相等的方法推算。填写以后,学生回答:为什么填这个数?

让学生口答结果。提问:从上面的计算里,你发现了什么,出示比例的基本性质,并让学生说一说。如果把比例写成分数形式,请你说一说外项和内项。提问:在这个比例里交叉相乘的积有什么关系?追问:为什么交叉相乘的积相等?

三、巩固练习

1. 提问:什么叫做比?什么叫做比例?比和比例有什么不同的地方?怎样判断两个比能不能组成比例?

2. 完成“练一练”。

指名4人板演.集体订正.说说是怎样判断的?

3.做练习六第1题。

让学生做在练习本上。如果能组成比例就再写出比例。提问练习情况并板书,让学生说明“为什么”。

4.做练习六第2题。

让学生判断,在练习本上写出来。提问:哪一个比和:4组成比例?为什么,(比值相等,或化简后两个比相同)

5.完成练习六第3题。

学生先观察、计算,然后口答,说明理由。

四、全课小结

这堂课学习了什么内容?什么叫做比例?比例的基本性质是什么?可以怎样判断两个比能不能组成比例?

五、布置作业

练习六第4、5题。

酸的性质教案5篇相关文章:

防溺水安全教案小班教案5篇

中班教案我长大了教案5篇

防溺水教案大班教案参考5篇

小班教案认识数字2教案5篇

中班健康教案保护眼睛教案5篇

小班语言教案下雪了教案5篇

大班教案月亮船教案模板5篇

狼的教案优秀教案通用5篇

大班教案英语教案精选5篇

吹泡泡教案游戏教案模板5篇

酸的性质教案5篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
115387