因数和倍数教案最新6篇

时间:
tddiction
分享
下载本文

大家在制定教案时,首先要明确教学目标和学生需求,有效的教案能够提高学生的学习动机,使他们在课堂上更加积极主动,下面是好文档范文小编为您分享的因数和倍数教案最新6篇,感谢您的参阅。

因数和倍数教案最新6篇

因数和倍数教案篇1

撰写公开课教案是每个教师都必需熟悉的一项工作,好的公开课教案能够激发同学兴趣,培养同学多方面的能力,有效提高课堂教学效率。本站提供的这套人教新课标版五年级下册《因数和倍数》公开课教案符合新课标的规范,思路清晰,结构合理,适合同学的年龄特征,与素质的要求相吻合,具有科学性、实用性等优点。

第二单元

因数和倍数

课题:因数和倍数

教学目标:

1、同学掌握找一个数的因数,倍数的方法;

2、同学能了解一个数的因数是有限的,倍数是无限的;

3、能熟练地找一个数的因数和倍数;

4、培养同学的观察能力。

教学重点:掌握找一个数的因数和倍数的方法。

教学难点:能熟练地找一个数的因数和倍数。

教学过程:

一、引入新课。

1、出示图,让同学各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为2×6=12

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?

(指名生说一说)

师:你有没有明白因数和倍数的关系了?

那你还能找出12的其他因数吗?

4、你能不能写一个算式来考考同桌?同学写算式。

师:谁来出一个算式考考全班同学?

5、师:今天我们就来学习因数和倍数。(出示课题:因数 倍数)

齐读p12的注意。

二、新授:

(一)找因数:

1、出示例1:18的因数有哪几个?

从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?

同学尝试完成:汇报

(18的因数有: 1,2,3,6,9,18)

师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有: 1,2,3,4,6,9,12,18,36

师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

仔细看看,36的因数中,最小的是几,最大的是几?

看来,任何一个数的因数,最小的一定是( ),而最大的一定是( )。

3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示:如

18的因数

小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的`因数找起,一直找到它的自身,找的过程中一对一对找,写的时候从小到大写。

(二)找倍数:

1、我们一起找到了18的因数,那2的倍数你能找出来吗?

汇报:2、4、6、8、10、16、……

师:为什么找不完?

你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)

那么2的倍数最小是几?最大的你能找到吗?

2、让同学完成做一做1、2小题:找3和5的倍数。

汇报 3的倍数有:3,6,9,12

师:这样写可以吗?为什么?应该怎么改呢?

改写成:3的倍数有:3,6,9,12,……

你是怎么找的?(用3分别乘以1,2,3,……倍)

5的倍数有:5,10,15,20,……

师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示

2的倍数 3的倍数 5的倍数

师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

(一个数的倍数的个数是无限的,最小的倍数是它自身,没有最大的倍数)

三、课堂小结:

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

四、独立作业:

完成练习二1~4题

课后反思:

因数和倍数教案篇2

在四年级(下册)教材里,学生已经建立了倍数和因数的概念,会找10以内自然数的倍数,100以内自然数的因数。本单元继续教学倍数和因数的知识,要理解公倍数、最小公倍数和公因数、最大公因数的意义,学会找两个数的最小公倍数和最大公因数的方法。为以后进行通分、约分和分数四则计算作准备。全单元的教学内容分三部分编排。

第22~25页教学公倍数。主要是两个数的公倍数、最小公倍数的意义,求最小公倍数的方法。

第26~31页教学公因数。包括两个数的公因数、最大公因数的意义,求最大公因数的方法。在练习五里还安排了最小公倍数与最大公因数的比较。

第32~36页实践与综合应用。利用邮政编码、身份证号码等实例,教学用数字编码表示信息。

在“你知道吗”里,介绍了我国古代曾经用“辗转相除法”求最大公因数,也介绍了现代人们经常用“短除法”求两个数的最大公因数和最小公倍数。在阅读这材料后,如果学生愿意用短除法求两个数的最大公因数或最小公倍数,是允许的。但是,不要求全体学生掌握和使用短除法。编排的一道思考题,是可以用公因数知识解决的实际问题。

1?在现实的情境中教学概念,让学生通过操作领会公倍数、公因数的含义。

例1教学公倍数和最小公倍数,例3教学公因数和最大公因数,都是形成新的数学概念,都让学生在操作活动中领会概念的含义。

例1先用长3厘米、宽2厘米的长方形纸片,分别铺边长6厘米和8厘米的正方形,发现正好铺满边长6厘米的正方形,不能正好铺满边长8厘米的正方形,并从长方形纸片的长、宽和正方形边长的关系,对铺满和不能铺满的原因作出解释。再想像这张长方形纸片还能正好铺满哪些正方形,从倍数的角度规律,为形成新的数学概念积累丰富的感性材料。然后揭示公倍数与最小公倍数的含义,把感性认识提升成理性认识。

教材选择长方形纸片铺正方形的活动教学公倍数,是因为这一活动能吸引学生发现和提出问题,能引导学生思考。学生用同一张长方形纸片铺两个不同的正方形,面对出现的两种结果,会提出“为什么有时正好铺满、有时不能”,“什么时候正好铺满、什么时候不能”这些有研究价值的问题。他们沿着正方形的边铺长方形纸片,就会想到正好铺满与不能正好铺满的原因可能和边长有关,于是产生进一步研究正方形边长和长方形长、宽之间关系的愿望。

分析正方形的边长和长方形长、宽之间的关系,按学生的认知规律,设计成两个层次: 第一个层次联系 铺的过程与结果,从两个正方形的边长除以长方形的长、宽没有余数和有余数的层面上,体会正好铺满与不能正好铺满的原因。第二个层次根据正好铺满边长6厘米的正方形、不能正好铺满边长8厘米的正方形的经验,联想还能正好铺满边长是几厘米的正方形。先找到这些正方形,把它们的边长从小到大排列,知道这样的正方形有无数多个。再用“既是2的倍数,又是3的倍数”概括地描述这些正方形边长的特征。显然,前一层次形象思维的成分较大,思考难度较小,对后一层次的抽象认识有重要的支持作用。

让学生在现实情境中,通过活动领悟公倍数的含义,不仅体现在例题的教学中,还落实到练习里。第23页“练一练”在2的倍数上画“?”,在5的倍数上画“○”。从数表里的10、20、30三个数既画了“?”又画了“○”,体会它们既是2的倍数,又是5的倍数,是2和5的公倍数。练习四第4、7、8题都是与公倍数有关的实际问题,让学生通过涂颜色、填表格、圈日期等活动体会公倍数的含义。

例3教学公因数、最大公因数的含义,也通过“铺”的活动组织教学。与例1不同的是,例3用2张边长不同的正方形纸片分别去铺同一个长方形,是形成公因数概念的需要。例题编写和练习编排与教学公倍数相似,这里不再重复。

2?突出概念的内涵、外延,让学生准确理解概念。

概念的内涵是指这个概念所反映的一切对象的共同的本质属性。公倍数是几个数公有的倍数,公因数是几个数公有的因数,可见“几个数公有的”是公倍数和公因数这两个概念的本质属性。在倍数、因数的基础上教学公倍数、公因数,关键在于突出“公有”的.含义。

教材用“既是……又是……”的描述,让学生理解“公有”的意思。例1先联系长3厘米、宽2厘米的长方形纸片正好铺满边长6厘米、12厘米、24厘米……的正方形这些现象,从正方形的边长分别除以长方形纸的长和宽都没有余数,得出正方形的边长“既是2的倍数,又是3的倍数”,一方面概括了这些正方形边长的特点,另一方面让学生体会“既是……又是……”的意思。然后在“6、12、18、24……既是2的倍数,又是3的倍数,它们是2和3的公倍数”这句话里把“既是……又是……”进一步概括为“公倍数”,形成公倍数的概念。

集合图能直观形象地显示公倍数、公因数的含义。第23页把6的倍数与9的倍数分别写到两个集合圈里,这两个集合圈有一部分重叠,在重叠部分里写的数既是6的倍数,也是9的倍数,是6和9的公倍数。先观察这个集合图,再填写第24页的集合图,学生能进一步体会公倍数的含义。

概念的外延是指这个概念包括的一切对象。对具体事例是否属于概念作出判断,就是识别概念的外延,加强对概念的认识。例1在揭示2和3的公倍数的概念,指出它们的公倍数是6、12、18、24……后,提出“8是2和3的公倍数吗”这个问题,利用反例凸现公倍数的含义。让学生明白8只是2的倍数,不是3的倍数,从而进一步明确公倍数的概念。练习四第4题先在表格里分别写出4、5、6的倍数,再寻找4和5、5和6、4和6的公倍数,也有助于学生识别概念的外延。

3?运用数学概念,让学生探索找两个数的最小公倍数、最大公因数的方法。

本单元只教学两个数的公倍数、最小公倍数和两个数的公因数、最大公因数。因为这些是最基础的数学知识,在约分和通分时应用最多。只要这些基础知识扎实,即使遇到三个分数的通分,学生也能灵活处理。不编排例题教学短除法求最小公倍数和最大公因数,而是采用写出两个数的倍数或因数,找出它们的最小公倍数或最大公因数的方法。这样安排的目的是,在运用概念解决问题的过程中,进一步加强数学概念的教学。

例2教学求两个数的最小公倍数,出现了多种解决问题的方法,这些方法的思路都公倍数和最小公倍数的概念,从6和9的公倍数、最小公倍数的意义引发出来。学生可能先分别写出6和9的倍数,再找出它们的公倍数和最小公倍数。由于倍数需一个一个地写,还要逐个逐个地比,所以得出公倍数和最小公倍数比较慢。学生也可能在9的倍数里找6的倍数,只要依次想出9的倍数(即9×1、9×2、9×3……的积),逐一判断是不是6的倍数,操作比较方便。尤其求两个较小数(不超过10)的最小公倍数时,更能显出这种方法的优点。当然,在6的倍数里找9的倍数,也是一种方法,但没有9的倍数里找6的倍数快捷。教材安排学生在交流中体会各种方法,首先是理解各种方法的共同点,都在寻找既是6的倍数、又是9的倍数,而且是尽量小的那个数。然后是理解各种方法的个性特点,从中作己的选择。

例4求两个数的最大公因数,教学方法和例2相似。求8和12的最大公因数的几种方法中,教材呈现的第一种方法比较适宜多数学生。因为一个数的因数的个数是有限的,先写出两个数的全部因数,再找出最大公因数,操作不麻烦。第二种方法从小到大依次想较小数的因数,稍不留心就会遗漏某一个因数。练习五编排第3题的意图就在于此。

练习四第5题在初步学会求两个数的最小公倍数之后安排,两个色块分别呈现最小公倍数的两种特殊情况。左边的色块里,每组的两个数之间有倍数与因数关系,它们的最小公倍数是较大的那个数。右边的色块里,每组两个数的最小公倍数是它们的乘积。练习五第6题是初步会求两个数的最大公因数后安排的。左边色块里,每组的两个数之间也有倍数与因数的关系,它们的最大公因数是较小的那个数。右边色块里,每组两个数的最大公因数是1。这些特殊情况,在通分和约分时会经常出现。教学时可以按色块进行,先分别求出同一色块四组数的最小公倍数或最大公因数,再找出相同的特点,通过交流内化成求最小公倍数和最大公因数的技能。要注意的是,学生有倍数与因数的知识,能够理解同组两个数之间的倍数、因数关系,以及它们的最小公倍数和最大公因数的规律。由于新教材不讲互质数,也不教短除法,所以两个互质数的最小公倍数是它们的乘积、最大公因数是1,这些特殊情况,只能在具体对象中感受,不宜深入研究原因,更不要出结语让学生记忆。第9题分别写出1、2、3、4……20这些数与3、2、4、5的最大公因数,在发现有趣规律的同时,也在感受两个数的最大公因数的两种特殊情况。

因数和倍数教案篇3

设计说明

1.自主学习,构建知识网。

一位学者曾说过:“今后的文盲不再是不识字的人,而是那些不会学习的人。”所以当今社会,自主学习就显得尤为重要。因此本节课在设计上,着重引导学生自主将这部分内容进行归纳和整理,形成全面的结构图,既培养了学生整理信息的能力,又使他们对所学知识有一个完整的、系统的印象,在头脑中形成清晰的思路。

2.重点复习,强化提高。

在复习过程中先使学生进一步明确因数与倍数的概念及2、5、3倍数的特征。然后在小组内合作整理相关知识,把这部分内容梳理后,教师结合学生的汇报引导学生系统地复习有关倍数和因数的知识。最后通过练习巩固这部分的知识点。

课前准备

教师准备 ppt课件

学生准备 习题卡

教学过程

⊙回顾整理,建构知识网络

1.同学们回忆一下,因数与倍数这一单元最基本的概念有什么?

2.小组合作,整理“因数与倍数”的相关知识,对所学的知识用自己喜欢的方式进行整理,对有特色的整理方式可以在班内交流。

3.把整理的内容在班内交流,展示学生作品。

因数与倍数

4.教师组织学生汇报,引导学生系统地复习有关因数与倍数的知识,试着举例说明。(板书重点知识)

设计意图:在小组合作中梳理因数与倍数的相关知识,使学生对数的概念有进一步的认识。

⊙重点复习,强化提高

1.课件出示教材118页1题,学生独立完成后汇报结果。

(1)根据2的倍数的特征:“个位上是0,2,4,6,8的数都是2的倍数”,可以看出56,204,630,22,78这五个数符合条件,它们都是2的倍数。

(2)根据5的倍数的特征:“个位上是0或5的数都是5的'倍数”,可以看出195,630,65这三个数符合条件,它们都是5的倍数。

(3)根据3的倍数的特征:“一个数各个数位上的数的和是3的倍数,这个数就是3的倍数”,可以看出87,195,204,630,57,78这六个数符合条件,它们是3的倍数。

(4)根据质数的特征:“只有1和它本身两个因数”,可以看出79,31,83这三个数是质数。

(5)根据合数的特征:“除了1和它本身还有其他因数”,可以看出除了79,31,83这三个质数,其他的数都是合数。

(6)根据奇数的特征:79,87,195,31,57,65,83这七个数是奇数

因数和倍数教案篇4

第一单元 倍数与因数

3的倍数的特征

第6课时

[教学内容] 数的奇偶性

[教学目标]

1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。

[教学重、难点]

1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。

[教学过程]

活动1:利用数的奇偶性解决一些简单的实际问题。

让学生尝试解决问题,寻找解决问题的策略,利用解决问题的策略发现规律,教师适当进行“列表”“画示意图”等解决问题策略的指导。

试一试:

本题是让学生应用上述活动中解决问题的策略尝试自己解决问题,最后的结果是:翻动10次,杯口朝上;翻动19次,杯口朝下。解决问题后,让学生以“硬币”为题材,自己提出问题、解决问题,还可以开展游戏活动。

活动2:探索奇数、偶数相加的规律

先研究“偶数+偶数”的规律,在经历“列式计算—初步得出结论—举例验证—得出结论”的过程后,再引导学生用这样的研究方式探索“奇数+奇数”“奇数+偶数”的奇偶性变化规律,最后让学生应用结论判断计算结果是奇数还是偶数。还可以引导学生研究减法中奇偶性的变化规律

偶数+偶数=偶数

奇数+奇数=偶数

偶数+奇数=奇数

[板书设计]

数的奇偶性

例子: 结论:

12 + 34 = 48 偶数+偶数=偶数

11 + 37 =48 奇数+奇数=偶数

12 + 11 =23 奇数+偶数=奇数

因数和倍数教案篇5

学习内容:

人教版小学数学五年级下册第23、24页。

学习目标:

1.我能理解什么是质数和合数,掌握了判断质数、合数的方法。

2.我知道100以内的质数,记住了20以内的质数。

3.我能在自主探究中独立思考,合作探究时畅所欲言。

学习重点:

能理解质数、合数的`意义,正确判断一个数是质数还是合数。

学习难点:

用恰当的方法找出100以内的质数;会给自然数分类。

教学过程:

一、导入新课

二、检查独学

1.互动分享收获。

2.质疑探讨。

3.试试身手:第23页做一做。

三、合作探究

1.小组合作,利用课本24页的表格,用恰当的方法找出100以内的质数,做一个质数表。

2.展示、交流:你们是怎样找出100以内质数的?

3.小组讨论:(1)有没有最大的质数或合数?(2)根据因数的个数,可把非零自然数分成哪几类?

我的想法________________________________

4.我能很快熟记20以内的质数。

5.独立思考:

(1)是不是所有的质数都是奇数?(2)是不是所有的奇数都是质数?

(3)是不是所有的合数都是偶数?(4)是不是所有的偶数都是合数?

6.组内交流。

因数和倍数教案篇6

教学内容:

苏教版义务教科书《数学》五年级下册第30~32页例1、例2和试一试、例3和试一试练一练,第35页练习五第1~4题。

教学目标:

1.使学生认识倍数和因数,能判断两个自然数间的因数和倍数关系;学会找一个数的因数和倍数的方法,能按顺序找出100以内自然数的所有因数,10以内自然数的所有倍数;了解一个数的因数、倍数的特点。

2.使学生经历探索求一个数的因数或倍数的.方法、一个数的因数和倍数特点的过程,体会数学知识、方法的内在联系,能有条理地展开思考,培养观察、比较,以及分析、推理和抽象、概括等思维能力,发展数感。

3.使学生主动参与操作、思考、探索等活动,获得解决问题的成功感受,树立学好数学的信心,养成乐于思考、勇于探究等良好品质。

教学重点:

认识因数和倍数。

教学难点:

求一个数的因数、倍数的方法。

教学准备:

小黑板、准备12个同样大的正方形学具。

教学过程:

一、操作引入,认识意义

1.操作交流。

引导:你能用12个小正方形拼成一个长方形吗?请同桌两人合作拼一拼,看看每排摆几个,摆了几排,想想有几种拼法,用算式把你的拼法表示出来。 学生操作,用算式表示,教师巡视。

交流:你有哪些拼法?请你说一说,并交流你表示的算式。

结合学生交流,呈现不同拼法,分别板书出积是12的三道乘法算式(包括可以板书除法算式)。

2.认识意义。

(1)说明:我们先看43=12。根据43-12,我们就可以说:4和3都是12的因数;反过来,12是4的倍数,也是3的倍数。

(2)启发:现在让你看另外两个算式,你能说一说哪个是哪个的因数,哪个是哪个的倍数吗?同桌互相说说看。

(3) 小结:从上面可以看出,在整数乘法算式里,两个乘数都是积的因数,积是两个乘数的倍数。它们之间的关系是相互依存的。这就是我们今天学习的新内容:因数和倍数。(板书课题)在研究因数和倍数时,所说的数一般指不是o的自然数。

因数和倍数教案最新6篇相关文章:

洋洋娃娃和小熊跳舞教案6篇

人教版一年级数学6和7教案6篇

幼儿社会和活动的教案6篇

单数和双数大班数学教案6篇

幼儿园单数和双数的教案6篇

数学认识15和16教案优质6篇

学习和活动总结最新6篇

一年级上册6和7的认识教案8篇

培训感悟和心得最新6篇

小学数学一年级上册6和7教案5篇

因数和倍数教案最新6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
194162