教案的编写过程应当充分考虑到学生的学习风格,以便在实际教学中提供多样化的教学方法,大家在写教案时,务必要考虑到不同学生的学习差异,下面是好文档范文小编为您分享的高一函数的教案5篇,感谢您的参阅。
高一函数的教案篇1
学习目标:
(1)理解函数的概念
(2)会用集合与对应语言来刻画函数,
(3)了解构成函数的要素。
重点:
函数概念的理解
难点:
函数符号y=f(x)的理解
知识梳理:
自学课本p29—p31,填充以下空格。
1、设集合a是一个非空的实数集,对于a内 ,按照确定的对应法则f,都有 与它对应,则这种对应关系叫做集合a上的一个函数,记作 。
2、对函数 ,其中x叫做 ,x的取值范围(数集a)叫做这个函数的 ,所有函数值的集合 叫做这个函数的 ,函数y=f(x) 也经常写为 。
3、因为函数的值域被 完全确定,所以确定一个函数只需要
?
4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验:
① ;② 。
5、设a, b是两个实数,且a
(1)满足不等式 的实数x的集合叫做闭区间,记作 。
(2)满足不等式a
(3)满足不等式 或 的实数x的集合叫做半开半闭区间,分别表示为 ;
分别满足x≥a,x>a,x≤a,x
其中实数a, b表示区间的两端点。
完成课本p33,练习a 1、2;练习b 1、2、3。
例题解析
题型一:函数的概念
例1:下图中可表示函数y=f(x)的图像的只可能是( )
练习:设m={x| },n={y| },给出下列四个图像,其中能表示从集合m到集合n的函数关系的有____个。
题型二:相同函数的判断问题
例2:已知下列四组函数:① 与y=1 ② 与y=x ③ 与
④ 与 其中表示同一函数的是( )
a. ② ③ b. ② ④ c. ① ④ d. ④
练习:已知下列四组函数,表示同一函数的是( )
a. 和 b. 和
c. 和 d. 和
题型三:函数的定义域和值域问题
例3:求函数f(x)= 的定义域
练习:课本p33练习a组 4.
例4:求函数 , ,在0,1,2处的函数值和值域。
当堂检测
1、下列各组函数中,表示同一个函数的是( a )
a、 b、
c、 d、
2、已知函数 满足f(1)=f(2)=0,则f(-1)的值是( c )
a、5 b、-5 c、6 d、-6
3、给出下列四个命题:
① 函数就是两个数集之间的对应关系;
② 若函数的定义域只含有一个元素,则值域也只含有一个元素;
③ 因为 的函数值不随 的变化而变化,所以 不是函数;
④ 定义域和对应关系确定后,函数的值域也就确定了.
其中正确的有( b )
a. 1 个 b. 2 个 c. 3个 d. 4 个
4、下列函数完全相同的是 ( d )
a. , b. ,
c. , d. ,
5、在下列四个图形中,不能表示函数的图象的是 ( b )
6、设 ,则 等于 ( d )
a. b. c. 1 d.0
7、已知函数 ,求 的值.( )
高一函数的教案篇2
教学目标:
使学生理解函数的概念,明确决定函数的三个要素,学会求某些函数的定义域,掌握判定两个函数是否相同的方法;使学生理解静与动的辩证关系.
教学重点:
函数的概念,函数定义域的求法.
教学难点:
函数概念的理解.
教学过程:
Ⅰ.课题导入
[师]在初中,我们已经学习了函数的概念,请同学们回忆一下,它是怎样表述的?
(几位学生试着表述,之后,教师将学生的回答梳理,再表述或者启示学生将表述补充完整再条理表述).
设在一个变化的过程中有两个变量x和y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说y是x的函数,x叫做自变量.
[师]我们学习了函数的概念,并且具体研究了正比例函数,反比例函数,一次函数,二次函数,请同学们思考下面两个问题:
问题一:y=1(xr)是函数吗?
问题二:y=x与y=x2x 是同一个函数吗?
(学生思考,很难回答)
[师]显然,仅用上述函数概念很难回答这些问题,因此,需要从新的高度来认识函数概念(板书课题).
Ⅱ.讲授新课
[师]下面我们先看两个非空集合a、b的元素之间的一些对应关系的例子.
在(1)中,对应关系是乘2,即对于集合a中的每一个数n,集合b中都有一个数2n和它对应.
在(2)中,对应关系是求平方,即对于集合a中的每一个数m,集合b中都有一个平方数m2和它对应.
在(3)中,对应关系是求倒数,即对于集合a中的每一个数x,集合b中都有一个数 1x 和它对应.
请同学们观察3个对应,它们分别是怎样形式的对应呢?
[生]一对一、二对一、一对一.
[师]这3个对应的共同特点是什么呢?
[生甲]对于集合a中的任意一个数,按照某种对应关系,集合b中都有惟一的数和它对应.
[师]生甲回答的很好,不但找到了3个对应的共同特点,还特别强调了对应关系,事实上,一个集合中的数与另一集合中的数的对应是按照一定的关系对应的,这是不能忽略的. 实际上,函数就是从自变量x的集合到函数值y的集合的一种对应关系.
现在我们把函数的概念进一步叙述如下:(板书)
设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有惟一确定的数f(x)和它对应,那么就称f︰ab为从集合a到集合b的一个函数.
记作:y=f(x),xa
其中x叫自变量,x的取值范围a叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{y|y=f(x),xa}叫函数的值域.
一次函数f(x)=ax+b(a0)的定义域是r,值域也是r.对于r中的任意一个数x,在r中都有一个数f(x)=ax+b(a0)和它对应.
反比例函数f(x)=kx (k0)的定义域是a={x|x0},值域是b={f(x)|f(x)0},对于a中的任意一个实数x,在b中都有一个实数f(x)= kx (k0)和它对应.
二次函数f(x)=ax2+bx+c(a0)的定义域是r,值域是当a0时b={f(x)|f(x)4ac-b24a };当a0时,b={f(x)|f(x)4ac-b24a },它使得r中的任意一个数x与b中的数f(x)=ax2+bx+c(a0)对应.
函数概念用集合、对应的语言叙述后,我们就很容易回答前面所提出的两个问题.
y=1(xr)是函数,因为对于实数集r中的任何一个数x,按照对应关系函数值是1,在r中y都有惟一确定的值1与它对应,所以说y是x的函数.
y=x与y=x2x 不是同一个函数,因为尽管它们的对应关系一样,但y=x的定义域是r,而y=x2x 的定义域是{x|x0}. 所以y=x与y=x2x 不是同一个函数.
[师]理解函数的定义,我们应该注意些什么呢?
(教师提出问题,启发、引导学生思考、讨论,并和学生一起归纳、总结)
注意:①函数是非空数集到非空数集上的一种对应.
②符号f:ab表示a到b的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不可.
③集合a中数的任意性,集合b中数的惟一性.
④f表示对应关系,在不同的函数中,f的具体含义不一样.
⑤f(x)是一个符号,绝对不能理解为f与x的乘积.
[师]在研究函数时,除用符号f(x)表示函数外,还常用g(x) 、f(x)、g(x)等符号来表示
Ⅲ.例题分析
[例1]求下列函数的定义域.
(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x
分析:函数的定义域通常由问题的实际背景确定.如果只给出解析式y=f(x),而没有指明它的定义域.那么函数的定义域就是指能使这个式子有意义的实数x的集合.
解:(1)x-20,即x2时,1x-2 有意义
这个函数的定义域是{x|x2}
(2)3x+20,即x-23 时3x+2 有意义
函数y=3x+2 的定义域是[-23 ,+)
(3) x+10 x2
这个函数的定义域是{x|x{x|x2}=[-1,2)(2,+).
注意:函数的定义域可用三种方法表示:不等式、集合、区间.
从上例可以看出,当确定用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:
(1)如果f(x)是整式,那么函数的定义域是实数集r;
(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;
(3)如果f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合;
(4)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即使每个部分有意义的实数的集合的交集);
(5)如果f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.
例如:一矩形的宽为x m,长是宽的2倍,其面积为y=2x2,此函数定义域为x0而不是全体实数.
由以上分析可知:函数的定义域由数学式子本身的意义和问题的实际意义决定.
[师]自变量x在定义域中任取一个确定的值a时,对应的函数值用符号f(a)来表示.例如,函数f(x)=x2+3x+1,当x=2时的函数值是f(2)=22+32+1=11
注意:f(a)是常量,f(x)是变量 ,f(a)是函数f(x)中当自变量x=a时的函数值.
下面我们来看求函数式的值应该怎样进行呢?
[生甲]求函数式的值,严格地说是求函数式中自变量x为某一确定的值时函数式的值,因此,求函数式的值,只要把函数式中的x换为相应确定的数(或字母,或式子)进行计算即可.
[师]回答正确,不过要准确地求出函数式的值,计算时万万不可粗心大意噢!
[生乙]判定两个函数是否相同,就看其定义域或对应关系是否完全一致,完全一致时,这两个函数就相同;不完全一致时,这两个函数就不同.
[师]生乙的回答完整吗?
[生]完整!(课本上就是如生乙所述那样写的).
[师]大家说,判定两个函数是否相同的依据是什么?
[生]函数的定义.
[师]函数的定义有三个要素:定义域、值域、对应关系,我们判定两个函数是否相同为什么只看两个要素:定义域和对应关系,而不看值域呢?
(学生窃窃私语:是啊,函数的三个要素不是缺一不可吗?怎不看值域呢?)
(无人回答)
[师]同学们预习时还是欠仔细,欠思考!我们做事情,看问题都要多问几个为什么!函数的值域是由什么决定的,不就是由函数的定义域与对应关系决定的吗!关注了函数的定义域与对应关系,三者就全看了!
(生恍然大悟,我们怎么就没想到呢?)
[例2]求下列函数的值域
(1)y=1-2x (xr) (2)y=|x|-1 x{-2,-1,0,1,2}
(3)y=x2+4x+3 (-31)
分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域.
对于(1)(2)可用直接法根据它们的定义域及对应法则得到(1)(2)的值域.
对于(3)可借助数形结合思想利用它们的图象得到值域,即图象法.
解:(1)yr
(2)y{1,0,-1}
(3)画出y=x2+4x+3(-31)的图象,如图所示,
当x[-3,1]时,得y[-1,8]
Ⅳ.课堂练习
课本p24练习17.
Ⅴ.课时小结
本节课我们学习了函数的定义(包括定义域、值域的概念)、区间的概念及求函数定义域的方法.学习函数定义应注意的问题及求定义域时的各种情形应该予以重视.(本小结的内容可由学生自己来归纳)
Ⅵ.课后作业
课本p28,习题1、2. 文 章来
高一函数的教案篇3
一、教材分析
函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。
本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。
二、重难点分析
二、重难点的确定
根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。
三、学情分析
1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。
2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。
四、目标分析
1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。
2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。
3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。
五、教法学法
本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。
学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。
六、教学过程
(一)创设情景,引入新课
情景1:提供一张表格,把上次运动会得分前10的情况填入表格,我报名次,学生提供分数。
名次
1
2
3
4
5
6
7
8
9
10
得分
情景2:汽车的行驶速度为时过早80千米/小时,汽车行驶的距离y与行驶时间x之间的关系式为:y=80x
情景3:某市一天24小时内的气温变化图:(图略)
提问(1):这三个例子中都涉及到了几个变化的量?(两个)
提问(2):当其中一个变量取值确定后,另一个变量将如何?(它的值也随之唯一确定)
提问(3):这样的关系在初中称之为什么?(函数)引出课题
[设计意图]在创设本课开头情境1、2的时候,我并没有运用书中的前两个例子。第一个例子我改成提供给学生一张运动会成绩统计单。是为了创设和学生或者生活相近的情境,从而引起学生的兴趣,调节课堂气氛,引人入胜,第二个例子我改成一道简单的速度与时间问题,是因为学生对重力加速度的问题还不是很熟悉。同时这两个例子并没有改变课本用三个实例分别代表三种表示函数方法的意图。
这样学生可以从熟悉的情景引入,提高学生的参与程度。符合学生的认知特点。
(二)探索新知,形成概念
1、引导分析,探求特征
思考:如何用集合的语言来阐述上述三个问题的共同特征?
[设计意图]并不急着让学生回答此问,为引导学生改变思路,换个角度思考问题,进入本节课的重点。这里也是教师作为教学的引导者的体现,及时对学生进行指引。
提问(4):观察上述三问题,它们分别涉及到了哪些集合?(每个问题都涉及到了两个集合,具体略)
[设计意图]引导学生观察,培养观察问题,分析问题的能力。
提问(5):两个集合的元素之间具有怎样的关系?(对应)
及时给出单值对应的定义,并尝试用输入值,输出值的概念来表达这种对应。
2、抽象归纳,引出概念
提问(6):现在你能从集合角度说说这三个问题的共同点吗?
[设计意图]学生相互讨论,并回答,引出函数的概念。训练学生的归纳能力。
板书:函数的概念
上述一系列问题,始终在学生知识的“最近发展区”,倡导学生主动参与,通过不断探究、发现,在师生互动,生生互动中,在学生心情愉悦的氛围中,突破本节课的重点。
3、探求定义,提出注意
提问(7):你觉得这个定义中应注意哪些问题?
[设计意图]剖析概念,使学生抓住概念的本质,便于理解记忆。
2、例题剖析,强化概念
例1、判断下列对应是否为函数:
(1)
(2)
[设计意图]通过例1的教学,使学生体会单值对应关系在刻画函数概念中的核心作用。
例2、(1);
(2)y=x-1;
(3);
(4)
[设计意图]首先对求函数的定义域进行方法引导,偶次方根必需注意的地方,其次,通过(2)(3)两道题,强调只有对应法则与定义域相同的两个函数,才是相同的函数。而与函数用什么字母表示无关,进一步理解函数符号的本质内涵。
例3、试求下列函数的定义域与值域:
(1)
(2)
[设计意图]让学体会理解函数的三要素。
4、巩固练习,运用概念
书本练习p24:1,2,3,4
5、课堂小结,提升思想
引导学生进行回顾,使学生对本节课有一个整体把握,将对学生形成的知识系统产生积极的影响。
七、教学评价
1、我通过对一系列问题情景的设计,让学生在问题解决的过程中体验成功的乐趣,实现对本课重难点的突破。
2、为使课堂形式更加丰富,也可将某些问题改成判断题。
3、在学生分析、归纳、建构概念的过程中,可能会出现理解的偏差,教师应给予恰当的梳理
4。本节课的起始,可以借助于多媒体技术,为学生创设更理想的教学情景。
高一函数的教案篇4
教学目标:
使学生掌握对数形式复合函数的单调性的判断及证明方法,掌握对数形式复合函数的奇偶性的判断及证明方法,培养学生的数学应用意识;认识事物之间的内在联系及相互转化,用联系的观点分析问题、解决问题.
教学重点:
复合函数单调性、奇偶性的讨论方法.
教学难点:
复合函数单调性、奇偶性的讨论方法.
教学过程:
[例1]设loga23 <1,则实数a的取值范围是
a.0<a<23 b. 23 <a<1
c.0<a<23 或a>1d.a>23
解:由loga23 <1=logaa得
(1)当0<a<1时,由y=logax是减函数,得:0<a<23
(2)当a>1时,由y=logax是增函数,得:a>23 ,∴a>1
综合(1)(2)得:0<a<23 或a>1 答案:c
[例2]三个数60.7,0.76,log0.76的大小顺序是
a.0.76<log0.76<60.7 b.0.76<60.7<log0.76
c.log0.76<60.7<0.76 d.log0.76<0.76<60.7
解:由于60.7>1,0<0.76<1,log0.76<0 答案:d
[例3]设0<x<1,a>0且a≠1,试比较|loga(1-x)|与|loga(1+x)|的大小
解法一:作差法
|loga(1-x)|-|loga(1+x)|=| lg(1-x)lga |-| lg(1+x)lga |
=1|lga| (|lg(1-x)|-|lg(1+x)|)
∵0<x<1,∴0<1-x<1<1+x
∴上式=-1|lga| [(lg(1-x)+lg(1+x)]=-1|lga| lg(1-x2)
由0<x<1,得lg(1-x2)<0,∴-1|lga| lg(1-x2)>0,
∴|loga(1-x)|>|loga(1+x)|
解法二:作商法
lg(1+x)lg(1-x) =|log(1-x)(1+x)|
∵0<x<1 ∴0<1-x<1+x
∴|log(1-x)(1+x)|=-log(1-x)(1+x)=log(1-x)11+x
由0<x<1 ∴1+x>1,0<1-x2<1
∴0<(1-x)(1+x)<1 ∴11+x >1-x>0
∴0<log(1-x) 11+x <log(1-x)(1-x)=1
∴|loga(1-x)|>|loga(1+x)|
解法三:平方后比较大小
∵loga2(1-x)-loga2(1+x)=[loga(1-x)+loga(1+x)][loga(1-x)-loga(1+x)]
=loga(1-x2)loga1-x1+x =1|lg2a| lg(1-x2)lg1-x1+x
∵0<x<1,∴0<1-x2<1,0<1-x1+x <1
∴lg(1-x2)<0,lg1-x1+x <0
∴loga2(1-x)>loga2(1+x)
即|loga(1-x)|>|loga(1+x)|
解法四:分类讨论去掉绝对值
当a>1时,|loga(1-x)|-|loga(1+x)|
=-loga(1-x)-loga(1+x)=-loga(1-x2)
∵0<1-x<1<1+x,∴0<1-x2<1
∴loga(1-x2)<0, ∴-loga(1-x2)>0
当0<a<1时,由0<x<1,则有loga(1-x)>0,loga(1+x)<0
∴|loga(1-x)|-|loga(1+x)|=|loga(1-x)+loga(1+x)|=loga(1-x2)>0
∴当a>0且a≠1时,总有|loga(1-x)|>|loga(1+x)|
[例4]已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定义域为r,求实数a的取值范围
解:依题意(a2-1)x2+(a+1)x+1>0对一切x∈r恒成立.
当a2-1≠0时,其充要条件是:
a2-1>0△=(a+1)2-4(a2-1)<0 解得a<-1或a>53
又a=-1,f(x)=0满足题意,a=1不合题意.
所以a的取值范围是:(-∞,-1]∪(53 ,+∞)
[例5]已知f(x)=1+logx3,g(x)=2logx2,比较f(x)与g(x)的大小
解:易知f(x)、g(x)的定义域均是:(0,1)∪(1,+∞)
f(x)-g(x)=1+logx3-2logx2=logx(34 x).
①当x>1时,若34 x>1,则x>43 ,这时f(x)>g(x).
若34 x<1,则1<x<43 ,这时f(x)<g(x)
②当0<x<1时,0<34 x<1,logx34 x>0,这时f(x)>g(x)
故由(1)、(2)可知:当x∈(0,1)∪(43 ,+∞)时,f(x)>g(x)
当x∈(1,43 )时,f(x)<g(x)
[例6]解方程:2 (9x-1-5)= [4(3x-1-2)]
解:原方程可化为
(9x-1-5)= [4(3x-1-2)]
∴9x-1-5=4(3x-1-2) 即9x-1-43x-1+3=0
∴(3x-1-1)(3x-1-3)=0 ∴3x-1=1或3x-1=3
∴x=1或x=2 经检验x=1是增根
∴x=2是原方程的根.
[例7]解方程log2(2-x-1) (2-x+1-2)=-2
解:原方程可化为:
log2(2-x-1)(-1)log2[2(2-x-1)]=-2
即:log2(2-x-1)[log2(2-x-1)+1]=2
令t=log2(2-x-1),则t2+t-2=0
解之得t=-2或t=1
∴log2(2-x-1)=-2或log2(2-x-1)=1
解之得:x=-log254 或x=-log23
高一函数的教案篇5
一、教学目标:
知识与技能:理解指数函数的概念,能够判断指数函数。
过程与方法:通过观察,分析、归纳、总结、自主建构指数函数的概念。领会从特殊到一般的数学思想方法,从而培养学生发现、分析、解决问题的能力。
情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
二、教学重点、难点:
教学重点:指数函数的概念,判断指数函数。教学难点:对底数的分类。
三、学情分析:
学生已经学习了函数的知识,指数函数是函数知识中重要的一部分内容,学生若能将其与学过的正比例函数、一次函数、二次函数进行对比着去理解指数函数的概念、性质、图象,则一定能从中发现指数函数的本质,所以对已经熟悉掌握函数的学生来说,学习本课并不是太难。学生通过对高中数学中函数的学习,对解决一些数学问题有一定的能力。通过教师启发式引导,学生自主探究完成本节课的学习。高一学生的认知水平从形象向抽象、从特殊向一般过渡,思维能力的提高是一个转折期,但是,学生的自主意识强,有主动学习的愿望与能力。有好奇心、好胜心、进取心,富有激情、思维活跃。
四、教学内容分析:
本节课是《普通高中课程标准实验教科书·数学(1)》(人教b版)第二章第一节第二课()《指数函数及其性质》。根据我所任教的学生的实际情况,我将《指数函数及其性质》划分为三节课(探究指数函数的概念,图象及其性质,指数函数及其性质的应用),这是第一节课“探究指数函数的概念”。指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。函数及其图象在高中数学中占有很重要的位置。如何突破这个即重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,主要是让学生学会如何去发现研究心的函数,为后面学习对数函数、幂函数做出铺垫。
五、教学过程:
(一)创设情景
问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂x次后,得到的细胞分裂的个数y与x之间,构成一个函数关系,能写出x与y之间的函数关系式吗?
问题2:《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭。”请你写出截取x次后,木棰剩余量y关于x的函数关系式?
(二)导入新课
引导学生观察,两个函数中,有什么共同特征?
(三)新课讲授指数函数的定义
(四)巩固与练习例题
(五)课堂小结
(六)布置作业
高一函数的教案5篇相关文章: