剪对称图形教案精选8篇

时间:
Anonyme
分享
下载本文

教案中的目标明确可以帮助学生更好地理解课程内容,教案的内容应该具有挑战性,但又不超出学生的能力范围,下面是好文档范文小编为您分享的剪对称图形教案精选8篇,感谢您的参阅。

剪对称图形教案精选8篇

剪对称图形教案篇1

【教学内容】

人教版义务教育课程标准实验教科书二年级上册p68。

【教学目标】

1、了解生活中的对称现象,认识轴对称图形的一正些基本特征。能正确识别轴对称图形,会设计制作简单的轴对称图形。

2、通过观察、猜想、验证、操作,经历认识轴对称图形的过程,掌握判断轴对称图形的方法,培养学生的动手、创新能力。

3、在认识、制作和欣赏轴对称图形的过程中感受物体或图形的对称美。

【教学重点】

认识轴对称图形的基本特征。

【教学难点】

设计制作轴对称图形。

【教具、学具准备】

教师准备课件、一个蝴蝶图形;学生彩纸、剪刀、直尺及若干对称图形和不对称图形。

【教学过程】

一、创设情境,感受对称

1、认识生活中的对称现象。眼镜导入新课。

二、小组合作,探讨轴对称图形的特征

1、认识对称图形

师:看,老师还给大家带来了几张美丽的图片。

生:蜻蜓、树叶、蝴蝶、脸谱的图片

师:请孩子们仔细观察这些图形,你能发现它们共同的特征吗?

生1:它们的两边一样的。

生2:它们是对称的。

师:你是怎样理解对称的?

生2:它们的两边是一样的。

师:这些图形真像你们说的那样,左右两边完全一样吗?

生:是。

师:谁能想个办法来验证这些图形左右两边完全一样呢?

生:对折。

师:对折,这个方法听起来倒挺不错的,(板书:对折)到底怎样对折,你能折给大家看一看吗?

生:上台演示折蝴蝶图形

师:刚才这位孩子用对折的方法证明了这个蝴蝶图形的左右两边是完全一样的。那大家也来试一试,好吗?

生齐:好。

师:那先听清楚要求:请小组长拿出1号信封里的4张图片,小组里的每个同学,把其中一个图形对折一下,看看这些图形的两边是一样的吗?开始吧。

生:动手操作

师:谁来说说你验证的结果?

生1:我折的是脸谱图形,对折后它的两边是一样的。

生2:我折的是蜻蜓图形,它对折后,两边是一样的。

生3:我折的是蝴蝶图形,对折后它的两边是完全一样的。

生4:我折的是树叶图形,对折后,它的两边也是完全一样的。

师:孩子们刚才折这些图形,对折后,它们的两边都是完全一样的,我们就说它们对折后,它们的两边重合了。

师:老师这里还有一个图形,是什么?

生:桃子图形。

师:想折吗?

生齐:想。

师:这个图形就在你们的3号信封里,小组长拿出来分给同学们折一折,说说你发现了什么?

生1:我发现了桃子图形一边大,一边小。

生2:它没有重合。

师:一点都没有吗?

生齐:有一点。

师:蝴蝶图形呢?

生齐:全部重合了。

师:像蝴蝶图形这样对折后两边全部重合我们就称为完全重合。

师:孩子们看大屏幕(课件演示蜻蜓、树叶、蝴蝶、脸谱四个图形对折后左右两完全重合的画面)

教师小结:像这样对折后,两边完全重合的图形,我们就把它叫做“对称图形”。(板书:对称)

2、认识对称轴

师:请大家打开对折后的对称图形,看一看,你又有什么新的发现?(把图贴在黑板上)

生:有一条线。

师:这一条线就是我们刚才折的折痕。

师:这条折痕是怎么形成的?有什么特别的地方?

生1:是对称图形对折后形成的。

生2:折痕的两边是完全一样的。

师:这样的折痕是对称图形中特有的,所以人们把这条折痕所在位置的直线,给它起了个形象简洁的名字,叫对称轴。(板书:对称轴)

师:我们通常用虚线来表示对称轴。(板书:画对称轴)

师:像这样,对折后,对称轴两边完全重合的图形我们就叫做“轴对称图形”。 (板书:轴)

三、应用拓展、巩固新知

1、判断轴对称图形

师:刚才我们认识了轴对称图形,那给你一些图形,你能找出轴对称图形吗?(课件出示:p68的做一做)

2、猜一猜

师:老师给你们看几张轴对称图形,不过我只给你们看它的一半,你们能猜出它们是我们所学过的哪些汉字、数字或英文字母吗?

3、找对称轴

师:今天,老师还给你们带来了几个图形老朋友,打个招呼吧!

(课件依次出示:长方形、正方形、圆形)

师:这几个图形各有几条对称轴呢,请你折一折。(边说边点课件出示)

四、师生共结

师:孩子们真会观察生活,对称的物体真是无处不在,只要孩子们留心观察,我相信你们还会找到更多更美的对称。

剪对称图形教案篇2

教学目标:

1、使学生初步认识生活中得对称现象,认识轴对称图形和对称轴;知道轴对称图形得含义,能判断一个图形是否是轴对称图形。

2、会根据轴对称图形得特点,找出相应得对称轴。

3、让学生体会理论来源于实践,又在实践中广泛运用这一道理。

4、培养学生得观察能力和动手操作能力。

教学重点:

掌握轴对称图形得特点,能判断一个图形是否是轴对称图形。

教学难点:

会找出轴对称图形得对称轴。

教学准备:

多媒体课件,剪纸

学具准备:

长方形纸一张、剪刀、

教学过程:

一、情景欣赏:

师:同学们,老师今天给大家带来了一些得图片,请大家欣赏,在欣赏得同时观察这些图片有什么特点。

1.屏幕出现图片

(1)自然景观图片

师:这景色美吗?

生:美

师:大自然得景色很美,而且还很有特点,聪明得设计师和能工巧匠利用大自然得特点设计和建造了一些美丽得建筑。

(2)轴对称建筑图片

师:你看到得图形有什么特点?

生:有,有得左右一样,有得上下一样。两边一样…

师:我们得生活中经常也可以看到具有这种特点得物体和图形。

(3)生活中得轴对称图片

师:剪纸是我国得民间艺术,历史悠久,流传广泛,它最能体现这种特点。

(4)剪纸图片

2、对图形进行概括:

师:你们所看到得这些图形都有什么特点?

生:有得左右一样,有得上下一样。两边一样,有一种对称美。

师:上面这些图形给我们一种对称美,这些图形都是轴对称图形。(板书课题:轴对称图形)轴对称这种特点在我们日常生活中,应用很广泛,到底什么样得图形是轴对称图形呢?这就是我们今天要研究得问题。

二、动手操作发现新知:

1、师:我们来做个实验,先看大屏幕老师怎么做

(演示课件。折纸——画图——剪纸——打开)

师:现在请大家拿出你手中得长方形纸和剪刀,向老师这样也剪出一个简单得图形。

2、学生操作(教师巡视指导)

师:通过剪纸,你发现了什么?

生:我发现了我这个图形得两边一样,中间还有一条折痕,

师:那你知道它是什么图形吗?

生:轴对称图形。

师:能用你得话说一说什么是轴对称图形?

3、揭示特征。

师:老师给大家再演示一下

演示课件,概括轴对称图形得概念。

如果一个图形沿着一条直线对折,两侧得图形能够完全重合,这个图形就是轴对称图形。折痕所在得这条直线叫做对称轴

4、举例:

师:你能说一说生活中你见过哪些轴对称图形?

生:举例,师点评

师:同学们对什么是轴对称图形理解得非常好,现在我们在来研究一下我们学过得一些图形,看他们是不是轴对称图形。

三、合作研讨探究

1、把下面得图形剪下来折一折,看一看那些是轴对称图形?并画出他们得对称轴。

2、结论:课件演示

通过刚才剪一剪,折一折,画一画,你们又发现了什么?

师:通过合作研究,我们知道了这些图形中有得是轴对称图形,有得不是;有得轴对称图形只有一条对称轴,有得有两条,三条,四条,还有得有无数条对称轴。

四、巩固练习。

1、考考你得眼力

(1)下面得图形那些是轴对称图形?找出它们得对称轴。

师:不光这些几何图形是轴对称图形,我们学过得字母、数字、汉字有些也是轴对称图形。

(2)下面得字母。数字,汉字那些是轴对称图形?它们各有几条对称轴?

2、填一填

(1)如果一个图形沿着()对折,两侧得图形能够()这个图形就是轴对称图形。折痕所在得这条直线叫做()。

(2)圆是()图形,在同一圆里任何一条()都是圆得对称轴。

(3)等边三角形有()条对称轴

3、判断

(1)扇形也是轴对称图形,它和圆一样也有无数条对称轴。

(2)平行四边形可分成两个完全一样得三角形,所以,平行四边形也有两条对称轴。

(3)圆上任意两点间得线段都是圆得对称轴。

(4)有两条对称轴得图形只有长方形。

五、课堂小结:

1、通过这节课得学习你有什么收获?

2、结束语:

师:对称是一种美,是数学美在生活中得具体体现,希望大家能运用今天所学知识把我们生活装扮得更美丽、更精彩。谢谢同学们得合作,再见。

剪对称图形教案篇3

教学目标

1.认识对称现象,初步理解对称轴和轴对称图形的含义,掌握判断一个图形是否是轴对称图形的方法。

2.经历观察、操作、想象、交流等活动,感知现实世界中普遍存在的对称现象,发展空间观念。

3.体验到生活中处处有数学,获得成功的喜悦,培养学生的探究精神和美感。

教学重点

认识对称现象和轴对称图形的特点。

教学难点

掌握识别轴对称图形的方法。

教具准备

多媒体课件、实物图片等。

教学过程

一、谈话引入,激发兴趣

1、说说在游乐场喜欢玩的项目,出示主题图,引导学生观察。

2、从蝴蝶形状的风筝引出对称

二、合作探究,学习新知

(一)观察图形,认识对称

1、观察几幅对称图形,引导学生感悟对称。

2、说一说生活中的对称现象

(二)动手操作,认识轴对称图形

1、猜一猜:出示几幅轴对称图形,猜一猜它们是怎么来的。

2、动手操作,剪出轴对称图形

(1)师示范剪一件上衣的过程:折一折、画一画、剪一剪。

(2)生动手剪出自己喜欢的轴对称图形。

(3)交流展示学生的作品

3、认识对称轴

(1)看一看,摸一摸,说一说

(2)画一画:师示范画出对称轴,然后学生自己画,再交流。

4、初步理解轴对称图形

(1)说一说轴对称图形的特点,初步理解轴对称图形。

(2)议一议:讨论判断轴对称图形的方法(对折后完全重合才是轴对称图形)。

(3)举一举身边的.轴对称图形的例子。

三、巩固练习,拓展延伸

1、判一判:哪些是轴对称图形。

2、猜一猜:出示轴对称图形的一半,猜出它是什么图形。

3、折一折、画一画、数一数:长方形、正方形、圆形各有几条对称轴。

四、课堂总结

通过这节课的学习,你有什么收获?

剪对称图形教案篇4

?学习目标】:1、经历探索等腰三角形的轴对称性的过程,进一步理解轴对称的性质,发展空间观念;

2、探索并了解等腰三角形的轴对称性及其相关性质;

?主要问题】:等腰三角形有哪些性质?等边三角形有哪些性质?

一、基础知识回顾

1、下列图形不一定是轴对称图形的是( )a、圆 b、长方形 c、线段 d、三角形

2、以下结论正确的是( ).

a.两个全等的图形一定成轴对称 b.两个全等的图形一定是轴对称图形

c.两个成轴对称的图形一定全等 d.两个成轴对称的图形一定不全等

3、轴对称图形对应点连线被 ,对应角对应线段都 .

4、设a、b两点关于直线mn成轴对称,则 垂直平分 .

5、三角形的`周长等于 ,三角形的内角和是 .

6、怎样的三角形是轴对称图形?答: 。

7、如图(1), △abc中,ab=ac,请在图中标出此三角形各边和各角的名称。

二、新知识产生过程

问题1:等腰三角形有哪些性质?请阅读课本p121

8.等腰三角形是轴对称图形吗?如果是,请在图(2)中画出它的对称轴.

你是如何找到等腰三角形的对称轴的? .

等腰三角形的对称轴是什么? .

a.顶角的平分线所在的直线 b.底角的平分线所在的直线

c.底边上的高所在的直线 d.底边上的中线所在的直线

9.当你把等腰三角形沿它的对称轴对折后,你能发现等腰三角形有哪些特征?

把△abc沿折痕ad对折,找出其中重合的线段和角,填入下表(如图(3))

(关键操作:对折、重合)

10.归纳等腰三角形的性质:

性质1 .

性质2

性质3 .

11、根据等腰三角形性质定理,如图(4),在△abc中, ab=ac时,

(1) ∵ad⊥bc,∴∠_____ = ∠_____, = .

(2) ∵ad是中线,∴____⊥____ ,∠_____ =∠_____.

(3) ∵ad是角平分线,∴____ ⊥____ ,_____ =_____.

12、等腰三角形一个底角为70°,它的顶角为 .

问题2:等边三角形的哪些性质?

13、等腰三角形中有一种特殊的等腰三角形是 三角形,

即 叫等边三角形。

14、等边三角形是轴对称图形吗?

如果是,请你在图(5)画出等边三角形的对称轴

你能画出几条对称轴? .

15、当你把等边三角形沿它的对称轴对折后,

你能发现等边三角形有哪些特征?

16、归纳等边三角形性质:

性质1:等边三角形是 图形,它有 条对称轴.

性质2:等边三角形 相等.

17、课本p121 “议一议”:你有哪些办法可以等到一个等腰三角形?(课堂上小组交流)

三、巩固练习:

18、等腰三角形一个角为70°,它的另外两个角为

19、等腰三角形的两边长分别为6,8,则周长为 ;等腰三角形的周长为14,其中一边长为6,则另两边分别为

20、如图(6),在△abc中,ab=ac,∠b=70度,点d为bc的中点,

求∠bad的度数.

20、如图(7),△abc中,ab=ad=dc,∠bad=26°,求∠b和∠c的度数.

四、提高题:

21、如图(8)所示,在△abc中,ab=ab,fd⊥bc,de⊥ab,垂足

分别为d,e,∠afd=158°,求∠edf的度数.

剪对称图形教案篇5

教学内容:

教材28-29页例1及做一做,练习七1-3题

教学目标:

1、通过观察、操作活动,让学生初步认识轴对称图形的基本特征。

2、学生的观察能力、想象能力得到培养,进一步发展学生的空间观念,同时感受对称图形的美。

教学重点:

认识轴对称图形的基本特征。

教学难点:

能判断出轴对称图形。

教学教法:

观察、讨论法。准备一些轴对称图形的图片或剪纸(如窗花),也可用电脑上网收集各种各样轴对称的图片,让学生结合教材中的实物图进行观察、分析,找出这些图形有什么共同特点。

教学过程:

一、欣赏图片,建立表象

出示教材第28页单元主题图。

谈话:同学们,你们去过游乐场吗?这些玩具大家都玩过吗?那你对这个场景肯定不陌生了,你能给大家介绍下这个游乐场里有哪些好玩的项目吗?(请认识的学生介绍项目。)

小结:你瞧,这个游乐场可好玩了,高高的上空有缆车、摩天轮,下面还有小火车、滑滑梯、飞机,孩子们在这里玩得可高兴了,他们还在这儿放风筝呢,这里不仅好玩,还藏着好多数学知识,想不想认识它们呢?这节课我们就要在这样的游乐场里学习数学知识。

二、互动新授

1、小组合作,探究对称。

教师点击蜻蜓风筝和蝴蝶风筝的图形。

谈话:你看,这是在游乐场上的蝴蝶风筝和蜻蜓风筝,认真观察,它们在形状上有什么特征?(让学生用自己的语言说。)

教师小结并过渡:像这些物体,它们的左右两边是完全一样的,我们把这种现象称为对称,在我们的生活中还有着许多这样的物体,让我们一起去欣赏下吧。(教师出示叶子、蝴蝶和天安门图。)

师生谈话:从这些物体中,你发现它们都有什么特征呢?把你的发现在小组内说一说。

学生自主交流。

谁愿意来把你们组的发现说给大家庭?(学生在汇报时,教师尽量鼓励学生用自己的语言来表达,对学生一些不准确的表达无须过分强求,不必可以纠正。)

2、教学对称

师:同学们刚才观察得非常仔细,发现了这些各式各样的图形都有一个共同的特征,就是它们的左右两边都是完全一样的。这种现象在数学上称为对称,这些物体就是对称现象。

剪对称图形教案篇6

优秀教案片段:

(师利用多媒体课件出示一些轴对称图形)

师:小朋友们,这些图形美吗?仔细观察这些图形,它们有 哪些特点?

生:这些图形的两边都一样。

生:这些图形都是对称的。

师:你们想自身动手做一个漂亮的对称图形吗?

生:想。

师:那就抓紧时间拿出你们准备的彩纸和剪刀,开始行动吧!不会做的小朋友可以请老师和同学帮助。

设计说明:课前我已了解到三年级同学在美术课时已学过制作对称图形。所以,我就先让同学自由创作,并充沛尊重同学的个性差别,对个别动手能力较差的同学适时给予协助引导,对于一些动手能力较强的同学,和时给予鼓励肯定。

(剪图形活动结束)

师:现在请小朋友们举起你剪好的图形,让老师看一看,大声说出它的名字。

生:(苹果、松树、小房子、小花、蝴蝶、飞机、心形、图形……)

师:请一位小朋友说一说你做的是什么图形?你是怎么做的?

生:我做的是一个圆形,我先把一张纸对折,然后用量角器在上面画出半个圆形,再剪下来,打开,就成了一个完整的圆形了。

师:你知道利用工具来做,真不简单,还有谁愿意说?

生:我做的是一棵松树,我也是把一张纸对折,先在上面画出一棵松树的一半,然后剪下来,打开,就成了一棵完整的松树了。

师:为什么要先把一张纸对折?

生:因为假如不对折,剪出的图形两边就不一样大了。

(仍有同学手高高举起)

师:还有人想说呀?下面就请你们把剪好的图形在小组内交流展示,互相说一说自身是怎么做的?

设计说明:展示作品时,同学学习兴趣高涨,通过相互之间的交流,使同学在做数学的过程中初步感知轴对称图形的特征。

师:(出示蝴蝶图形做示范)请小朋友们把你们剪好的图形像老师这样对折,看一看、比一比对折后两边的图形,你发现了什么?

生:对折后,两边的图形重合了。

师:(出示一片不对称的枫叶图形)老师这儿还有一个图形,现在我把它也对折,老师手中的图形对折后的情况和你手中的图形对折后的情况一样吗?

生:不一样。

师:哪些地方不一样?

生:(指着老师手中的枫叶图形)

这个图形对折后两边的图形不一样大,一边大,一边小。

老师手中的图形对折后,两边的.图形没有重合完,下边还多出来一局部。

师:(趁机问)你们手中的图形对折后,是怎样重合的?

生:全部重合完了。

师:有没有多出来的局部?

生:没有。

师:有没有缺少的局部?

生:没有。

师:(指着同学的图形)这种重合就叫做完全重合。

师:(利用蝴蝶图形再次演示)像这种,对折后两边能够完全重合的图形,我们就把它叫做轴对称图形。

设计说明:我让同学充沛利用自身剪出的图形作为学具,指导同学亲自动手折一折,看一看,比一比,观察比较出两种图形对折后的不同情况,让每一位同学都主动参与,动手操作,亲身经历知识形成的过程,发现轴对称图形"对折后,两边完全重合"的特征。

师:现在,请小朋友们打开你的轴对称图形,仔细观察图形的中间,你又发现了什么?

生:(中间有1条线)

师:这条线是怎么得来的?

生:刚才我们对折的时候留下来的折痕。

师:刚才我们对折的时候就是沿着这条折痕所在的直线怎么样的?

生:对折的。

师:假如我们不沿着这条直线对折会怎么样?

生:两边的图形就不能完全重合了。

师:这说明这条线怎么样?

生:很重要。

师:你能给这条线取个名字吗?

生:中间线。

师:为什么把它叫做中间线?说说你的理由好吗?

生:因为这条线在这个图形的正中间,所以我把它叫做中间线。

师:还有谁想说?

生:对折线,因为这条线是我们对折后留下来的。

生:重合线,因为沿着这条线对折两边的图形就完全重合了。

师:小朋友们给这条线取的名字都非常有创意,想听数学小博士是怎么说的吗?

(课件演示:一个图形沿一条直线对折后,两边的图形能够完全重合,这个图形就是轴对称图形,折痕所在的这条直线叫对称轴。)

设计说明:在这一教学环节中,我再次引导同学亲身经历探索、发现知识的过程,体现同学的主体性,让同学根据自身的理解,给"这条线"取名字,培养同学的创新思维和空间想象能力,加深对"对称轴"的理解。在让同学通过动手操作,初步感知的基础上,配合课件动态出示"轴对称图形"的概念,使同学的认知结构逐步得到完善,由感性认识上升到理性认识。

剪对称图形教案篇7

教学目标:

1、经历探索简单图形轴对称性的过程,进一步体会轴对称的特征,发展空间观念

2、探索并了解角的平分线、线段垂直平分线的有关性质.

教学重点:

1、角、线段是轴对称图形

2、角的平分线、线段垂直平分线的有关性质

教学难点:角的平分线、线段垂直平分线的有关性质

准备活动:准备一个三角形、一张画好一条线段的纸张

教学过程:

先复习轴对称图形的知识,提问:角是不是轴对称图形呢?如果是,它的对称轴在哪里?引起学生思考并通过动手操作,寻找答案.

一、探索活动

教师示范:(按以下步骤折纸)

1、在准备好的三角形的每个顶点上标好字母;a、b、c.把角a对折,使得这个角的两边重合.

2、在折痕(即平分线)上任意找一点c,

3、过点c折oa边的垂线,得到新的折痕cd,其中,点d是折痕与oa的交点,即垂足.

4、将纸打开,新的折痕与ob边交点为e.

教师要引导学生思考:我们现在观察到的只是角的一部分.注意角的概念.

学生通过思考应该大部分都能明白角是轴对称图形这个结论.

问题2:在上述的操作过程中,你发现了哪些相等的线段?说明你的理由,在角平分线上在另找一点试一试.是否也有同样的发现?

学生应该很快就找到相等的线段.

下面用我们学过的知识证明发现:

如图,已知ao平分∠bac,oe⊥ab,od⊥ac.求证:oe=od.

巩固练习:在rt△abc中,bd是角平分线,de⊥ab,垂足为e,de与dc相等吗?为什么?

(1)如图,oc是∠aob的平分线,点p在oc上,po⊥oa,pe⊥ob,垂足分别是d、e,pd=4cm,则pe=__________cm.

(2)如图,在△abc中,,∠c=90°,ad平分∠bac交bc于d,点d到ab的距离为5cm,则cd=_____cm.

内容二:线段是轴对称图形吗?

做一做:按下面步骤做:

1、用准备的线段ab,对折ab,使得点a、b重合,折痕与ab的交点为o.

2、在折痕上任取一点c,沿ca将纸折叠;

3、把纸展开,得到折痕ca和cb.

观察自己手中的'图形,回答下列问题:

(1)co与ab有什么样的位置关系?

(2)ao与ob相等吗?ca与cb呢?能说明你的理由吗?

在折痕上另取一点,再试一试,你又有什么发现?

学生会得到下面的结论:

(1)线段是轴对称图形.

(2)它的对称轴垂直于这条线段并且平分它.

(3)对称轴上的点到这条线段的距离相等.

应用:

(1)如图,ab是△abc的一条边,,de是ab的垂直平分线,垂足为e,并交bc于点d,已知ab=8cm,bd=6cm,那么ea=________,da=____.

(2)如图,在△abc中,ab=ac=16cm,ab的垂直平分线交ac于d,如果bc=10cm,那么△bcd的周长是_______cm.

小结:

(1)角是轴对称图形.

(2)角平分线上的点到这个角的两边的距离相等.

(3)线段是轴对称图形.

(4)垂直并且平分线段的直线叫做这条线段的垂直平分线.简称中垂线.

(5)线段垂直平分线上的点到这条线段的两个端点距离相等.

作业:课本p193习题7.2:1、2、3.

教学后记:

学生对这节课的内容比较难掌握,特别是对于“角平分线上的点到这个角的两边距离相等”这个性质,一时难于理解.的部分原因是学生忘记了点但直线的距离是什么一回事.而对于中垂线的理解较好.基本上能找到当中相等的线段,并且用学过的知识予以证明.内容较多,容量较大.课后还要加强理解和练习.

剪对称图形教案篇8

教学内容

1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.

2.关于中心对称的两个图形是全等图形.

教学目标

理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用.

复习中心对称的基本概念(中心对称、对称中心,关于中心的对称点),提出问题,让学生分组讨论解决问题,老师引导总结中心对称的基本性质.

重难点、关键

1.重点:中心对称的两条基本性质及其运用.

2.难点与关键:让学生合作讨论,得出中心对称的两条基本性质.

教学过程

一、复习引入

(老师口问,学生口答)

1.什么叫中心对称?什么叫对称中心?

2.什么叫关于中心的对称点?

3.请同学随便画一三角形,以三角形一顶点为对称中心,画出这个三角形关于这个对称中心的对称图形,并分组讨论能得到什么结论.

(每组推荐一人上台陈述,老师点评)

(老师)在黑板上画一个三角形abc,分两种情况作两个图形

(1)作△abc一顶点为对称中心的对称图形;

(2)作关于一定点o为对称中心的对称图形

剪对称图形教案精选8篇相关文章:

剪春天教案模板5篇

剪花边美术教案5篇

数学图形教案反思5篇

图形组合的教案7篇

小班找图形教案参考5篇

大班认识图形教案5篇

中班幼儿图形分类教案5篇

图形宝宝排队教案5篇

小班数学课认识图形教案6篇

小班找图形教案优质6篇

剪对称图形教案精选8篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
147984