小学数学分数除法教案7篇

时间:
pUssy
分享
下载本文

认真准备教案能够帮助我们更好地把握教学的重点和难点,提高教学的针对性和有效性,一个精心编写的教案可以提高教师的教学效果,好文档范文小编今天就为您带来了小学数学分数除法教案7篇,相信一定会对你有所帮助。

小学数学分数除法教案7篇

小学数学分数除法教案篇1

教材分析

这节课是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。根据新旧知识的联系,抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。

学情分析

在已经学习了,已知一个数的几分之几是多少,求这个数是多少的问题的基础上,六年级学生能在一定的基础之上去拓展,去学习更新的知识。

教学目标

逆向思维,能根据具体的数量和分率,求出单位“1”的量。通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的`几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地用方程解答一些简单的实际问题。

教学重点和难点

1、 能确定单位“1”,理清题中的数量关系。

2、利用题中的等量关系用方程解答。

教学过程

一、1、苹果的重量是x千克,梨的重量比苹果多5千克 。

⑴、梨的重量比苹果多了( )千克。

⑵、梨的重量是( )千克。

2、钢笔x元,比毛笔少了3元 。

⑴、钢笔比毛笔少了( )元。

⑵、毛笔是( )元。

3、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

二、新授课

1、教学补充例题:水果店运来了一些苹果,已经卖了36千克 ,还剩下20千克,水果店运来了多少苹果?

(1)卖了 是什么意思?应该把哪个数量看作单位“1”?

(2)引导学生理解题意,画出线段图。

(3)引导学生根据线段图,分析数量关系式:运来苹果的重量-卖了的重量=剩下的重量

(4)指名列出方程。解:设运来苹果x千克。

x-36=20

2、教学例2

(1)出示例题,理解题意。

(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的 (1+)

(2)学生试画出线段图。

(3)根据线段图,结合题中的分率句,列出数量关系式:

航模小组人数+美术小组比航模小组多的人数=美术小组人数

(4)根据等量关系式解答问题。

解:设航模小组有人。

(1+)=25

=25÷

=20

答:略。

三、小结

1、今天学习了两道应用题,找出它们的共同点?(这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)

四、练习

练习十第4、12、14题。

小学数学分数除法教案篇2

设计说明

本节课通过设置疑问,运用自主探索、合作探究等学习方式理解分数与除法的关系,运用此关系探索假分数与带分数的互化方法,理解假分数与带分数的互化算理,培养学生观察、比较、推理、归纳及交流的能力。本节课在教学设计上主要有以下两大特点:

1.让学生在生活中感悟数学。

从生活实际出发,从“分蛋糕”的情境入手,把教材内容与“数学现实”有机地结合起来,符合小学生的认知特点,可以消除学生对数学知识的陌生感,同时增强学生的数学应用意识,唤起学生对数学学习的兴趣。

2.让学生体验成功的乐趣。

数学课堂教学要着眼于学生的潜能和可发展性,充分相信学生,给学生提供充分的自主探索的时间与空间,鼓励学生自主地进行观察、实验、猜测、推理、验证、交流等数学活动(探索除法与分数的关系,探索假分数与带分数互化的方法),使学生在自主探索的过程中真正理解和掌握数学基础知识与基本技能、数学思想和方法,从而获得广泛的数学活动经验。

课前准备

教师准备ppt课件

学生准备学具三种颜色的纸条

教学过程

第1课时分数与除法(一)

⊙设置疑问,导入课题

1.下面各题的商可以分为哪几类?

36÷6=64÷5=0.880÷5=165÷10=0.5

3÷7=0.428571428571…4÷9=0.4444…

引导学生归纳分类:

36÷6=6和80÷5=16的商为整数;

4÷5=0.8和5÷10=0.5的商为有限小数;

3÷7=0.428571428571…和4÷9=0.4444…的商为循环小数。

2.师总结:两个自然数相除,不能整除的时候,它们的商还可以用分数来表示。今天我们就来学习这部分内容。[板书:分数与除法(一)]

设计意图:复习旧知,回顾所学知识的内在联系,引出课题。

⊙层层深入,探索分数与除法的关系

1.出示问题,理解题意,列出算式。

课件出示:把1块蛋糕平均分给2个小朋友,每人可以分到几块蛋糕?如果把7块蛋糕平均分给3个小朋友呢?

师引导学生读题,提问(1):把1块蛋糕平均分给2个小朋友,可以写出怎样的算式?把7块蛋糕平均分给3个小朋友呢?

预设生:根据除法的意义,可以分别列式为1÷2和7÷3。

提问(2):把1块蛋糕平均分给2个小朋友,每人分到几块蛋糕?把7块蛋糕平均分给3个小朋友呢?

预设生:每人分别可以分到块和块。

提问(3):与1÷2之间是什么关系?与7÷3呢?

(学生观察、讨论后可以明确:1÷2=,7÷3=)

2.初步探索除法与分数的关系。

师:观察1÷2=,7÷3=,说一说整数除法中被除数和除数与得数中的分子和分母存在着什么样的关系。

(学生小组讨论交流,汇报)

师生共同总结:任何一个分数都可以表示为分子除以分母,其中,分子相当于被除数,分母相当于除数。即:被除数÷除数=(除数不为0)。

如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?

质疑:这里的a和b是否可以是任意自然数?为什么?

(不可以,这里的b≠0。在除法中,除数不能为0,所以在分数中,分母也不能为0。教师板书:b≠0)

小学数学分数除法教案篇3

教学内容:

49~50页的内容及练习十二1~12题。

教学目标:

1.知识与能力:并会用分数表示两个数相除的商,明确可以用分数表示两个数相除的商。

2.过程与方法:通过观察、探究,理解分数与除法的关系,经历分数与除法的关系的探究过程

3.情感、态度与价值观:通过观察、探究,渗透辩证思想,激发学生学习兴趣。

教学重点:

掌握分数与除法的关系,会用分数表示两个数相除的商。

教学难点:

理解可以用分数表示两个数相除的'商。

教具准备:

课件

教学过程:

一、复习导入

1. 表示什么意思?它的分数单位是什么?它有几个这样的分数单位?

2.把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几,把谁看作单位1?

3.引入:5除以9,商是多少?板书:59

如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。板书课题:分数与除法。

二、新课讲授

1.教学例1:出示题目

(1)列出算式。(板书:13=)

(2)讨论:1除以3结果是多少?你是怎样想的?

(3)教师画出示意图。把一个蛋糕平均分成3份,其中一份应是这个蛋糕的 ,就是 个1。

板书:13= 1/3(个)

2.教学例2:出示题目

(1)动手操作。拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。

(2)口述方法及每份分得的结果,教师总结几种不同的分法。

(3)归纳:从上面的操作可以看出,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块饼合起来就是1个饼的 ,即 块,因此,34=3/4 (块)。

由此可见, 不仅可以理解为把1块饼(单位1)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位1)平均分成4份,表示这样1份的数。

学生相互说说 表示的意义。

3.教学分数与除法的关系。

小学数学分数除法教案篇4

教学目标:

1、知识目标:体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

2、能力目标:培养学生动手动脑能力,以及判断、推理能力。

3、情感目标:培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

教学重点:

能求一个数的倒数。

教学难点:

分数除以整数计算法则的推导过程。

教学准备:

长方形纸片。

教学过程:

一、创设情景,教学分数除法的意义

1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

(1)每人吃1/2块饼,4个人共吃多少块饼?

(2)把2块饼平均分给4个人,每人吃了多少块饼?

(3)有2块饼,分给每人1/2块,可分给几个人?

2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

师:讨论:分数除法的意义和整数除法的意义一样吗?

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

二、探究分数除法的计算方法

(1) 引导参与,探究新知

师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

出示问题1。

请大家拿出一张操作纸,涂色表示出这张纸的4/7。

师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2

请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

方法一:把4/7平均分成2份就是把4份平均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7

方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/7×1/2=2/7

师:对这种做法大家有什么疑问吗?

生:这儿是除法怎么变成了乘法?

师:老师也有这个疑问,你能讲讲吗?

师:谁能结合图来讲一讲呢?

师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……

(2)质疑问难,理解新知

①师小结:有的是用分子除以整数,分母不变的方法算出结果2/7,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

③通过计算你们有什么发现?

生1、用第一种方法就不能做了。因为: 上一题的时候,分子4是2的倍数,4÷2能得到整数商。而 4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21

能再讲讲这样做的道理吗?

师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。

请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?

展示学生的分法

师(指着涂色部分):你所表示的这一部分是4/7的多少?

通过直观图理解4/7的1/3是4/21

(3)比较归纳,发现规律。

①师:在计算这两道题时同学们想到了不同的算法,计算左边这道题你比较喜欢那种方法?右边呢?

②在两道题的计算中同学们都想到了把除法转化成乘法来做,请观察一下,左边这道算式,在转化的前后什么变了,什么没变?怎么变的?

③师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!

小组活动,说算法。

④师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。

出示:分数除以整数,等于分数乘这个整数的倒数。

还有需要注意的地方吗?

生:有,除数不能为0。

师:谁能把分数除以整数的计算法则用自己的话来说一说?

完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。

⑥那象这样的分数除以整数的题目在计算时要注意些什么?

生:要约分!结果最简。除号要变成乘号!

三、巩固练习

学生独立完成

四、课堂小结

1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)

板书设计:

分数除以整数

小学数学分数除法教案篇5

教学内容:

五年级下册教科书第65—66页。

教学目标:

1.在具体的问题情境中,探究和理解分数与除法的关系,并能正确地用分数表示两个整数相除的商,会用两种方法叙述分数的意义。

2.在探究过程中,培养学生观察、比较、归纳等探究的能力。

3.体会知识来源于实际生活的需要,激发学习数学的积极性。

教学重点:

经历探究过程,理解和掌握分数与除法的关系。

教学难点:

通过操作,让学生理解一个分数可以表示的两种意义。

教材分析:

?分数与除法》是人教版小学数学五年级下册第四单元《分数》第二课时的教学内容。是在对分数意义有初步认知基础上的深入理解。在这节数学课中,不仅要让学生掌握分数与除法之间直观的位置关系,还要从分数意义中理解分数与除法的联系。所以在本课的的设计中,以分数意义的辨析贯穿始终。因为分数的意义,本身就是除法的界定,这才是分数与除法最根本的联系。

本节教学内容重视引导学生在观察比较中发现分数与除法的关系,探究整数除法得不到整数商的情况时,可以用分数表示;在表示整数除法的商时,用除数作分母,用被除数做分子。教材从“分蛋糕”的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数写成两数相除的形式。

教具学具:

课件,模型。

教学设计

一、导入

师:孩子们,上课之前先考验下大家,(出示课件)这个谜底是什么?

生:月饼。

师:你们的课外知识真丰富,你们喜欢吃月饼吗?

生:喜欢。

师:老师也喜欢。在月饼中也含有许多数学知识,我们一起来看看吧(出示课件),把6块月饼平均分给3个小朋友,每人分得多少块?怎样列式计算?

生:2块,6÷3=2(块)。(板书)

师:说得真棒,要是声音再大些就更好了,我们再来看下一个问题,把1块月饼平均分给2个小朋友,每人分几块?怎样列式计算?

生:0.5块,1÷2=0.5(块)。(板书)

师:表达得特别清楚,让大家一听就懂。老师就继续考验大家,如果把1块月饼平均分给3个小朋友,每人分几块?怎样列式计算?

师:你为你们组又增添了一份光彩。看来大家已经能够解决分月饼的问题了,不用学具直接说出5除于7等于多少?

生:七分之五。

师:非常正确。我们再来看这些算式,整数除法得不到整数商的时侯,可以用什么数表示商?

生:可以用分数表示。

师:在表示整数除法的商时,用谁作分母?用谁做分子?

生:用被除数作分子,除数作分母。

师:那么分数与除法有什么样的关系呢?谁能用语言概括下?

生:被除数除以除数等于除数分之被除数。

师:你表达得这么清晰流畅,了不起!

师总结:可以用分数表示整数除法的`商,用除数作为分母,被除数作为分子,除号相当于分数中的分数线。反过来,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。所以,分数与除数的关系我们可以用式子来表示为:被除数÷除数=被除数/除数(板书)。用字母表示是?

生:a÷b= a/b(b≠0)(板书)

师:这个关系式里每个数的范围要注意什么?

生:因为在除法里除数不能是零,所以分数的分母也不能是零。即b≠0。

师:想一想分数与除法有哪些联系和区别?

教师强调:分数是一种数,但也可以看作两个数相除(分数的分子相当于除法中的被除数,分母相当于除数)。除法是一种运算。

师:今后我们再看分数时,会有两种意义。(把“1”平均分成4份,表示这样3份的数,也可以是把“3”平均分成4份,表示这样1份的数。)

二、巩固练习

师:你们知道阿凡提吗?你有他聪明吗?敢不敢挑战他?我们来闯关,大家有信心吗?

1.1.用分数表示下面各式的商。

(1)3÷2 =()

(2)2÷9 =()

(3)7÷8 =()

(4)5÷12 =()

(5)31÷5 =()

(6)m÷n =()n≠0

2.把5千克糖平均分成7份,每份是( )千克;把1千克糖平均分成7份,5份是( )千克;也就是说5千克糖的( )和1千克糖

的( )是相等的

三、课堂小结

说说你的收获是什么?重点说说分数与除法的关系。

结束语:今天我们通过自己的努力,发现并学会了这么多知识,老师真为你们骄傲!其实生活中有更多的知识等着我们去发现、探索,快做个有新人吧,你会成长得更快!

四、作业布置

练习十二第1,3题。

板书设计

分数与除法

被除数÷除数=被除数/除数

a÷b= a/b(b≠0)

教学反思

这节课在引入课题之前,先利用谜语激发学生兴趣,引进分数,复习旧知。在探索新知时,从想象中每人2个饼,到一张饼,把一张饼平均分给4个人,每人能得到几块?有了刚才的复习知识进行铺垫、迁移,很容易能用算式1÷4来计算,学生很快会说出1/4,这时我会再提问:为什么是1/4?你是怎么分得?学生用准备的圆片分一分;接着出示:学生一步步经历了分得过程,对分数的意义就理解得更好了,也就明白了为什么是3/4。当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。

小学数学分数除法教案篇6

分数乘、除法及比是本册教材的重点内容,为突出知识间的内在联系,帮助学生形成知识网络,本节复习课在教学设计上主要关注以下几个方面:

1.重视对分数乘、除法之间的关系及分数乘、除法计算方法的复习。

教学中,结合教材内容,进一步强调分数乘、除法之间的关系,加强计算方法的指导,使学生在进一步理解并掌握分数除法是分数乘法的逆运算的同时,计算能力得到提高。

2.重视对相关概念、性质及某些知识间相互关系的复习。

教学中,把比的相关概念、倒数的相关概念、比的性质以及比与分数、除法的关系等作为重要的复习内容,结合教材相关习题进行全面、系统地复习,使学生加深对概念的理解,同时将比与分数、除法联系起来。

3.重视对学生解决问题能力的培养。

教学中,把用分数乘、除法解决问题和用比解决实际问题作为重要的复习内容之一,结合教材习题,重点分析题中的数量关系,使学生通过对比练习,更好地掌握解决分数乘、除法问题以及比的有关问题的思路,提高学生分析问题、解决问题的能力。

相同点:题中的数量关系相同,解题思路相同。

不同点:①题表示单位“1”的量已知,用乘法计算。

②题表示单位“1”的量未知,列方程解答或用除法计算。

(3)总结解决分数乘、除法问题的方法和解题关键。

①方法:表示单位“1”的量已知,求单位“1”的几分之几是多少,用乘法计算;表示单位“1”的量未知,已知一个数的几分之几是多少,求这个数,列方程解答或用除法计算。

②关键:找准表示单位“1”的'量。

设计意图:结合教材习题,复习画线段图分析问题的方法,在对比中使学生进一步理解并掌握解决分数乘、除法问题的方法和解题关键,提高学生解决问题的能力。

⊙巩固练习

1.完成教材115页6题。

地球上海洋面积是36000万平方千米,占地球总面积的。地球总面积是多少万平方千米?

2.完成教材116页8题。

(1)五年级同学收集了165个易拉罐,六年级同学比五年级多收集了。六年级收集了多少个易拉罐?

(2)四年级比六年级少收集了,四年级收集了多少个易拉罐?

3.完成教材116页10题。

一列火车的速度是180千米/时。一辆小汽车的速度是这列火车的,是一架喷气式飞机的。这架喷气式飞机的速度是多少?

4.完成教材116页11题。

(1)用84 cm长的铁丝围成一个长方形,这个长方形的长与宽的比是2∶1。这个长方形的长与宽分别是多少厘米?

84÷2=42(cm) 长:42×=28(cm)

宽:42×=14(cm)

(2)用84 cm长的铁丝围成一个三角形,这个三角形三条边长度的比是3∶4∶5。三条边各是多少厘米?

[84÷(3+4+5)=7(cm) 7×3=21(cm)

7×4=28(cm) 7×5=35(cm)]

⊙课堂总结

通过本节课的复习,你有什么收获?

小学数学分数除法教案篇7

教材分析

理解并掌握分数除法的计算方法,会进行分数除法计算;理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质;能够正确地化简比和求比值。这为以后学习运用比的知识解决有关的实际问题打下基础。学习本节课学生能理解并掌握分数除法的计算方法,会进行分数除法计算。

学情分析

分数除法是本单元的第一课,也是非常要的一课,这节课的学习效果将直接影响到后面解决问题的学习。由于学生普遍基础较差,必须在理解分数除法的意义的基础上开始学习。学生分析问题解决问题的能力较差,因此,要培养学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。

教学目标

1.通过具体的问题情境,探索并理解分数除法的计算方法。

2.能正确地进行分数除法的计算。

3.培养学生分析、推理能力。

教学重点和难点

教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。

教学难点:分数除以整数计算法则的推导过程。

教学过程

一、创设情景,教学分数除法的意义

1.以3盒水果糖的重量为问题为切入点,请你们列出算式并计算,看谁算的又快又好!

(1)每盒水果糖重100g,那么3盒有多重?

100×3=300(g)

(2)3盒水果糖重300g,那么每盒有多重?

300÷3=100(g)

(3)300g水果糖,每盒重100g,可以装几盒?

300÷ 100=3(盒)

2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

讨论:分数除法的'意义和整数除法的意义一样吗?

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

二、探究分数除法的计算方法

(1)引导参与,探究新知

师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

出示问题1。

请大家拿出一张操作纸,涂色表示出这张纸的4/5。

师:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?

4/5÷2

请同学们通过涂一涂,算一算的方式来研究4/5÷2怎样计算。小组合作,汇报交流。

方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。

4/5÷2=4÷2/5=2/5

方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。

4/5÷2=4/5×1/2=2/5

(2)质疑问难,理解新知

①师小结:有的是用分子除以整数,分母不变的方法算出结果2/5,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/5平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

③通过计算你们有什么发现?

生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

生2:把除法转化成乘法来做……4/5÷3=4/5×1/3=4/15

能再讲讲这样做的道理吗?

师:“4/5÷3”表示把4/5平均分成3份,取其中的一份。

请同学们拿出第二张操作纸,你能把图中的4/5平均分成3份,并表示出其中的一份吗?

展示学生的分法

师(指着涂色部分):你所表示的这一部分是4/5的多少?

通过直观图理解4/5的1/3是4/15

(3)比较归纳,发现规律。

分数除以整数(0除外),等于分数乘这个整数的倒数。要注意的是:

结果最简。除号要变成乘号。

三、巩固练习

学生独立完成

四、课堂小结

1、分数除法的意义是什么?

2.分数除以整数的计算法则是什么?(学生总结)

五、作业布置

小学数学分数除法教案7篇相关文章:

北师大版一年级小学数学教案7篇

除法1教案最新8篇

除法1教案参考8篇

除法三年级教案8篇

除法1教案6篇

除法1教案通用5篇

除法三年级教案优质8篇

六年级分数的乘法教案6篇

分数四则混合运算教案8篇

分数的混合运算三教案8篇

小学数学分数除法教案7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
119437